
We highlight the delightful situation where reviews considerably enhanced the impact of our results without any1

structural changes to the story, and thank the reviewers for it. Importantly, R3’s remarks led to an expanded interpretation2

of non-normality in RNNs which, combined to our proposed nnRNN model, we believe are of important significance to3

the understanding of RNN gradients. An updated version of our paper incorporates the points below.4

R1: Q“Add more explanation and insight on why the gap to LSTM performance is still larger than that to expRNN.” A:5

We believe this is due to the task design which suits gated networks very well (LSTM performs poorly on the other two6

tasks tested). As indicated in the main text, our goal is to perfect parametrization of recurrent connectivity, which can7

then be combined to gated architecture (ongoing and future work).8

R2: Q“[Clarify] how the asymptotic (in number of units or parameters) runtimes of the different approaches compare.9

Especially the runtime of optimizing P.” A: The forward pass of the nnRNN has the same complexity as that of a vanilla10

RNN, that is O(Tn2 ), for a hidden state of size n and a sequence of length T . The backward pass is similarly O(Tn2 ) plus11

the update cost of P, in addition to a once-per-update cost of O(n3 ) to combine the Schur parametrization via matrix12

multiplication. Importantly, the nnRNN leverages any orthogonal/unitary optimizer fof P which have complexities13

ranging from O(n log n) to O(n3 ) at each update, with their own advantages and caveats (see related work section in14

main text). We chose the expRNN scheme which is O(n3 ) in the worst case, but has fast run-time in practice.15

R3: Q“There is no guarantee that nnRNN solves the exploding gradient problem. [...] comparison [of ] nnRNN with16

spectral RNN might provide important insights. I recommend adding the theoretical or empirical analysis of the exploding17

gradient problems.” A: We thank R3 for pointing us to the spectral RNN (Zhang, Lei, and Dhillon, ICML 2018), which18

presents an SVD decomposition with the same motivation as our to Schur-decomposition: to maintain expressivity,19

whilst controlling a sprectrum (both using regularization). R3 astutely remarks that “[the relationship between these20

methods could] reveal whether we should constrain the eigenvalues or singular values of recurrent connection matrices”.21

We strongly believe that this distinction is important and not well understood by the community, and that the changes22

described herein add clarity to this question, in addition to strengthening the existing message of our paper.23

As pointed out, constraining the eigenspectrum to the unit circle mitigates gradient vanishing, but not necessarily24

gradient explosion, as singular values can still be greater than one (and so too the spectral norm of Jacobians). In25

this case however, gradients explode polynomially in time rather than exponentially (Pascanu et al. (2013), Ar-26

jovsky et al. (2015)). We provide a theorem to establish this for triangular matrices. Theorem: Let A ∈ Rn×n
27

be a matrix such that Aii = 1, Aij = x for i < j, and Aij = 0 otherwise. Then for all d ≥ 1 and j > i,28

we have (Ad)ij = p
(d)
j−i(x) is polynomial in x of degree at most j − i, where the coefficient of x0 is zero and the29

coefficient of xl is O(
(
d
l

)
) for l = 1, 2, . . . , j − i. (proof by induction will be presented in appendix) This reveals30

that: (1) Gradient explosion in nnRNN, if present, is not as severe as if eigenvalues were larger than31

one. As shown below, training of nnRNN with eigenvalues strictly on the unit circle may be successful, albeit some-32

what unstable, but still more expressive than orthogonal RNNs. The figure shows that gradients for nnRNN on33

PTB task, with eigenvalues clamped or regularized, behave nicely during backpropagation and throughout training.34

(2) For a matrix with eigenvalues on the unit circle, non-35

normality necessarily implies a largest singular value greater36

than one. Thus, the expressivity afforded by non-normality37

must come with a trade-off between maintaining the eigen and38

singular spectra “close” to the unit circle, balancing control39

over exponential vanishing and polynomial exploding gradi-40

ents respectively. This fact remains true for any parametrization of41

non-normal matrices, including the SVD used in spectral RNN. The42

nnRNN is naturally suited to target this balance by explicitly allowing regularization over normal and non-normal parts43

of a matrix, and enabling the optimizer to find that trade-off. This explains why, in the main text, we find that allowing44

eigenvalues to deviate slightly from the unit circle throughout training (regularization on γ), along with weight decay45

for the non-normal part, yields the best results with most stable training. Further evidence of this balancing mechanism46

is found in trained matrices (see Fig 3 in main text). For the PTB task, non-normal structure emerges and the mean47

eigenvalue norm is balanced at γ̄ ∼ 0.958. In contrast for the copy task, matrices remain normal and γ̄ ∼ 1. Our Schur48

approach complements that of the SVD approach in additional ways: by adding the freedom to distribute eigenvalues on49

the unit circle (which we showed was exploited by the learning), and by adding interpretability as interaction between50

modes (which revealed task-intuitive differences in the solutions).51

R3:“Since optimization of the gamma obscures the cause of improvements, you should compare nnRNN with gamma=152

to other methods.” A: Thanks to the results above, we now know that optimization of γ plays an intricate role in53

allowing the expressivity afforded by non-normal connectivity structure while conserving good gradient propagation.54

Model TPTB = 150 TPTB = 300
nnRNN-γ = 1 1.46 ± 0.005* 1.49 ± 0.022**

nnRNN-γ = 0.958 1.47 ± 0.005 1.49 ± 0.008

Nevertheless, we acknowledge that it confounds the expressive55

role of non-normality. To elucidate this, we train the nnRNN on56

PTB by clamping γ at 1, and at 0.958 (the mean values found57

by the optimizer in the unclamped case) respectively. Results complement those of Table 1 in the main text (∼1.32M58

params, N = 1024 units). As expected for γ = 1, some run did not converge (asterisks indicate number out of 5) as the59

emergence of non-normal structure pushes singular values above one. Despite this, on runs that did converge we found60

the best performance out of all methods (including regularized γ nnRNN), strongly indicating that non-normality does61

indeed provide more expressivity. For γ clamped at 0.958 the performance was virtually identical to that of nnRNN with62

regularized γ, indicating non-normal connectivity learning appears robust and independent of γ learning. Exploration of63

novel ways to promote the balance between polynomial explosion and exponential vanishing is promising future work.64
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