
We thank the reviewers for their thoughtful feedback. We believe that a few misreadings of our work made some of the1

evaluations overly harsh and would ask reviewers to reconsider our paper in the light of clarifications provided below.2

1. Why Online learning? (R2) It is acknowledged in the literature (Chakraborty and Murphy, 2014; Chakraborty3

and Moodie, 2013) that most of learning methods in DTRs focus on the batch (offline) settings, and “development of4

statistically sound estimation and inference techniques for” the online reinforcement learning (RL) in DTRs “is an5

important research direction.” We answers this open problem by proposing the first online RL algorithm in DTRs with6

provably theoretical guarantees. The applications of online RL in health care are motivated by the increasing “use7

of sophisticated mobile devices” which enables continuous monitoring and intervention on the fly (Chakraborty and8

Murphy, 2014). For example, a physician could prescribe a set of safe treatments and use online methods to find the9

optimal combination for a patient with chronic conditions. Broadly speaking, when the combination of the observational10

data (e.g., P (v)) and causal knowledge (causal diagram G) does not ensure the identifiability of the causal effects11

(Eπ[Y ]) in DTRs, the state of art methods would suggest running randomized clinical trials (RCTs) such as SMART12

(Murphy, 2003, 2005), and solve for the optimal policy using the standard offline methods (e.g., Q-learning). As the13

reviewer (R2) suggested, running online experiments in the real environment could be dangerous and expensive. Our14

results are the first adaptive randomization algorithm that could identify the optimal policy in DTRs while achieving15

near-optimal bounds on the cost of experimentation (regret). For more discussions on adaptive randomization and16

online RL, see (Gittins, 1979; Rosenberger and Lachin, 2015).17

2. High-dimensional State-Action Space (R1, R2) For experimental studies (e.g., RCTs) in DTRs, issues of sample18

complexity could arise when the state-action space |S||X | is high-dimensional. It was believed in the DTR literature that19

adaptive randomization procedures (e.g., online RL) could circumvent this issue (Cheung, Chakraborty, and Davidson,20

2015). Our analysis reveals that this is not the case. In particular, we present first results (Thms. 1-3) analyzing the21

information complexity of experimental studies in DTRs. We show that a regret bound of Ω(
√
|S||X |T ) is inevitable22

for any randomization procedure, regardless of how sophisticated it might be. This suggests that we should explore23

other methods to improve the learning convergence. For example, one could exploit the parametric assumptions of the24

underlying functions (e.g., linear). Our approach takes another route and tries to leverage the abundant, observational25

data that are available prior to the experimental studies. Specifically, we consider the non-identifiable settings where26

system dynamics (causal effects Px̄k
(sk+1|s̄k) and Ex̄K

[Y |s̄K ]) could not be uniquely determined due to unobserved27

confounding in canonical DTR models defined in Def. 1 (e.g., Fig. 1(a)). We derive informative bounds about the28

system dynamics in DTRs from the confounded observational data and incorporate the derived bounds into the online29

algorithm in an elegant way. We show that this novel approach combining both the online RL and offline bounding30

could significantly improve the learning performance of online learners for a large family of DTR instances.31

3. Identification Conditions (R2) Our online algorithms (Sec. 2.1) are developed under the conditions of sequential32

back-door in DTRs (e.g., Fig. 1(b)); while bounding results in Sec. 3.1 are applicable to DTRs with arbitrary unobserved33

confounding (Fig. 1(a)). Reviewer 2 (R2) seems to be somewhat confused with our identification conditions, and34

might mistook Fig. 1(a) as the basis of causal assumptions used for online RL methods in Sec. 2.1. As R2 suggested,35

randomized experiments and online RL are similar in nature (Bareinboim, Forney, and Pearl, 2015). Since each36

candidate policy π does not take U as input, the sequential backdoor holds in the samples collected by the online RL37

algorithm in Alg. 1. Causal quantities Px̄k
(sk+1|s̄k) and Ex̄K

[Y |s̄K ] are thus immediately identifiable, and estimable38

from experimental data. For instance, in Fig. 1(b), S1, S2 block all back-door paths from X1, X2 to Y . The causal effect39

Ex1,x2
[Y |s1, s2] could be estimated as E[Y |x1, x2, s1, s2]. Given these clarifications, we would like to respectfully40

ask R2 to re-evaluate our online RL algorithm (Alg. 1) and theoretical regret analysis (Thms. 1-3).41

R2: (1) Regarding the factorization of distribution Pπ(x̄K , s̄K , y) (below Line 113, Page 3), the exogenous U42

are subsumed in the product of causal quantities Px̄k
(sk+1|s̄k) and Ex̄K

[Y |s̄K ]. Specifically, we average U over43

distribution P (u), and factorize the resultant causal effect Px̄K
(y, s̄K) following the basic definition of conditional44

probabilities and exclusion restrictions. (2) Bounds in Thm. 2 is a decreasing function relative to ∆π and is maximized45

when ∆π is the smallest, i.e., π is the second best policy. (3) The consistency axiom suggests that counterfactual46

probabilities P (s̄k+1x̄k
|x̄k) = P (s̄k+1|x̄k). However, Lem. 1 is concerned with gap between causal quantities47

Px̄k
(s̄k+1)−Px̄k

(s̄k), which generally do not equate to the bound P (s̄k+1, x̄k)−P (s̄k, x̄k). (4) Γ(s1) is well defined48

since we define Xk as an empty set when k < 1. Γ is a function over state-action space for all horizon k = 1, . . . ,K.49

(5) In Corol. 1, the upper bound must be no larger than 1 since E[Y |s̄K , x̄K ] ≤ 1. (6) Thm. 6 is stronger than standard50

non-identifiability proof since for the constructed DTRs M1,M2, not only their transitional probabilities Px̄k
(sk+1|s̄k)51

have to be different, but they also need to match exactly the lower and upper bounds in Thm. 5. The bounds in Thm. 552

are thus tight given the confounded observational data. To the best of our knowledge, we are not aware of any other53

tightness result regarding DTRs in the literature.54

R1, R3: We really appreciate the reviewers for the helpful suggestions and references. We will incorporate these55

changes in the camera-ready version of the paper if accepted.56


