
We thank all the reviewers for carefully reading of the manuscript and constructive comments. We addressed the issues1

raised in our response below, mostly focusing on the numerous questions raised by Reviewer 3.2

Reviewer #1: Assumptions A.2 and A.3 used in Algorithm 2. Assumption A.2 was also used in Mairal et al. [1],3

while A.3 is a common assumption in linear regression analysis and it relates to the LARS problem in our online4

cvxMF setting. We agree with Reviewer #1 that the modifications described in detail on page 6 of the manuscript may5

have produced practical performance improvements in the proposed algorithm. We will report on these results in the6

revised paper. We wanted to avoid notational overload and exactly match our analysis with every step of the algorithm7

which is the reason why we did not dwell on testing the proposed modifications.8

Reviewer #2: Improving the clarity of the technical sections. We agree with the reviewer that the notation may be9

hard to follow, but the problem setup is such that most of it is necessary. We will make every attempt to further improve10

readability through examples and detailed comments in the Supplement.11

Reviewer #3: There seem to be several misunderstandings regarding the steps of our algorithm and its analysis.12

1. MF versus NMF. Our results (both the proof and the algorithm) are independent of the non-negativity assumption13

and apply to both NMF and MF problems. To enforce non-negativity, several simple projection steps, akin to those14

described in Mairal et al. [1], suffice. For simplicity of exposition, and to be able to compare our results with the main15

result in [1], the derivations were presented for the classical MF problem only.16

2. The role of K-means in the online algorithm. We would like to point out that K-means is used only once to17

initialize the representative sets and is not an intrinsic component of the online algorithm. Furthermore, K-means is18

performed on small subsampled datasets, as running it on complete datasets is time consuming and unnecessary.19

3. The role of the constant N . A reasonable choice of N in the initialization and update phase depends on the size20

of the dataset n, the dimensions of the data points m and the number of clusters k. What is important to observe21

is that N is kept constant throughout in order to reduce the storage footprint and to ensure low-complexity online22

processing. Whenever a new point is fetched, it is compared against other points for inclusion into the representative23

regions. To maintain the list constant, for every added point another point is removed. Also, the reviewer is correct24

in observing that N does not feature in the convergence results, which are asymptotic and do not imply anything25

about the convergence rate. Clearly, if the point dimension m is large, it is beneficial to increase N . A final re-26

mark is that the N representative points are used to generate the convex bases for the space and not to “cover” the clusters.27

28

Figure 1: An incorrect assignment of a data
point to a different cluster does not affect
the “convex hull” constraint; the misclassi-
fied point (triangle) is still part of the repre-
sentative set used to describe the basis (star).
Hence, in this unrestricted representative re-
gion setting, classification errors do not influ-
ence the performance of the method nor do
they compromise convergence guarantees.

4. The perfect assignment assumption for the restricted online29

cvxMF is unrealistic. First, we point out that both the algorithm and the30

convergence analysis in our paper mostly focus on the unrestricted online31

cvxMF problem. In this case, the cluster assignment for a newly retrieved32

data point is made uniformly at random over the set of all possible clus-33

ters; we proved that this random assignment suffices to find a stationary34

point of the problem. The set of representative points still contains N35

data samples, and the convex hull property is still valid, except that the36

bases are not required to lie in the convex hull of points from the same37

cluster. Clearly, this unrestricted case can only have better performance38

than the restricted setting as nothing in the algorithm or the proof relies39

on correct classification. This point is illustrated in Figure 1: Even when40

the new sample (triangle in second cluster) is misclassified as belonging41

to the bottom cluster, the basis representing the latter cluster (red star)42

remains in the convex hull of representative set; the newly added point is43

retained in the representative set if the objective decreases and discarded44

otherwise.45

The restricted version is proposed because of its practical utility and ease46

of interpretation as we explained in great detail on page 2, in the Introduc-47

tion of the main text. In this setting, one requires the representative set48

to be partitioned into k representative subsets, each of which is restricted49

to be contained in its corresponding cluster. The basis is consequently50

restricted to be in the convex hull of data points from the same cluster. To51

satisfy these conditions we indeed require a “perfect assignment,” which52

is possible in many supervised and semi-supervised learning tasks where the labels of points are known beforehand.53

We once again point out that the main goal of our algorithm is not to accurately classify the data point, but to find the54

optimal convex bases in an online manner and retain a small list of representative points from the data set. Even with the55

availability of labels or perfect cluster assignment it is nontrivial to compute bases that satisfy the restricted convexity56

constraint with an online algorithm. As shown by our experiments, the heuristic classification step that we proposed to57

use in practice for the restricted version works very well and provides excellent results for several real world tasks.58


