General Concern: Complexity of ISDA. Theoretically, the computational complexity of updating the covariance matrices at each iteration is $O(B \times D^2)$ (using the online update equations in Supplementary A), where B is the batch size and D is the feature space dimension. In comparison, a typical ConvNet with L layers requires $O(B \times D^2 \times K^2 \times H \times W \times L)$ operations, where K is the filter kernel size, and H and W are the height and width of feature maps, respectively. Consider ResNet-110 on CIFAR (C10 & C100) as an example, for which we have $K = 3$, $H = W = 8$ and $L = 109$ (ignoring the last FC-layer), then the extra computation cost of ISDA is up to four orders of magnitude less than the total computation cost of the network.

Empirically, due to implementation issues, we observed a 5% to 12% increase in training time. Results are shown in Table 1. We will add these results and analysis in our revision.

Reviewer #1

1. Experiments with Fewer Training Samples. As suggested, we run ISDA on C100 using ResNet-110, with a varying number of training samples. The results are shown in Table 2. It can be observed that ISDA achieves improvements consistently, and performance gain seems to be more notable with fewer samples. For example, with 20% of training samples, ISDA outperforms the baseline by 4.12%.

Reviewer #2

2. Training Curves on CIFAR. Thanks for the suggestion. We will update our paper with training curves. Notably, ISDA consistently achieves a slightly higher training error but lower test error, indicating its regularization effect.

3. Tightness of the Upper Bound $\overline{\mathbb{L}}_{\infty}$. The upper bound follows from the Jensen’s inequality $E[\log X] \leq \log E[X]$, and the equation holds when $\lambda \Sigma_i \to 0$. To check the tightness of $\overline{\mathbb{L}}_{\infty}$ in practice, we empirically calculate \mathbb{L}_{∞} and $\overline{\mathbb{L}}_{\infty}$ over the training iterations, where \mathbb{L}_{∞} is estimated using Monte-Carlo sampling with sample size 1000, shown in Fig. 2. We can observe that $\overline{\mathbb{L}}_{\infty}$ gives a very tight upper bound. Figure 2: Values of \mathbb{L}_{∞} and $\overline{\mathbb{L}}_{\infty}$.

4. Gaussian Assumption. Indeed, the Gaussian assumption seems to be strong. But as we discussed in the introduction, formulating the true distribution requires to find all possible semantic directions, which is practically intractable. Our algorithm achieves a nice tradeoff between tractability and accuracy by making this assumption. Please refer to the 3rd paragraph in our Introduction and the first paragraph in Section 3.1 for detailed discussion.

Reviewer #3

1. Weak Baseline Results. Thanks for pointing out this issue. We have carefully checked our code and results during the rebuttal period, and find that some of our reproduced results on CIFAR (mostly for Wide-ResNet) are indeed worse than that reported in existing work. The reason is that we reproduced all these results by ourselves (in order to give a clean comparison), and we used the hyperparameters for ResNets to train Wide-ResNets, which tend to give inferior results (Wide-ResNets used improved training techniques). These differences are listed in Table 3. In addition, most existing work use all 50,000 samples for training and usually report the best results over iterations, while we held out 5,000 from the training set for validation.

Although with the above issues, we argue that our results are still valid, because (1) most of the baseline results are not affected and are competitive; and (2) even for affected cases, our comparison is fair because our ISDA used the same hyperparameters as the baselines.

After fixing the hyperparameter settings, we successfully reproduced stronger baselines. The new results are shown in the first two rows in Table 4, and ISDA still leads to better results. We will update the paper with these results.

2. Comparisons with Explicit Augmentation. Thanks for the suggestion. We have experimented with several recently proposed explicit data augmentation techniques, i.e., Cutout(CT), Random Erasing (RE) and AutoAugment (AA). From Table 4, it is clear that ISDA still can consistently improve their performance. In fact, our algorithm performs data augmentation in the feature space, and it is complementary to those explicit augmentation techniques in the input space. This can also be validated by our results on CIFAR w/ and w/o data augmentation shown in Table 1 in the paper.