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Many thanks for the helpful comments. We appreciate the praise for the “Extremely good and unique empirical
contributions”, “Very nice theoretical results” and “novel and sound” in the two high-confidence reviews recommending
acceptance, as well as the constructive criticisms, which we will address below.

Markov blanket, Lasso and comparison with other methods: We tried LASSO prior to this work, but the results
were not neurophysiologically meaningful. This is understandable in retrospect since causal feature selection via
Lasso or Markov Blanket (MB) requires causal sufficiency, let alone curse of dimensionality. Furthermore, with high
dimensional data, any algorithm using CI tests has to condition on large variable sets, in which case CI testing is
hard and cannot be trusted unless sample sizes are huge. Finally, even if causal sufficiency were to hold, the known
MB detection algorithms and Lasso do not detect variables but rank them, and gradually evaluate the prediction
accuracy by including more variables, according to the ranked order the algorithm returned. This requires a heuristic
hyperparameter to define what is the right acceptable number of variables to be included in the MB, which both affects
the FP and FN and does not provide a straight forward metric (FP, FN) to compare with our method. For completeness,
however, below we provide comparison results (to be included in the final version) of our method against available
algorithms (average for 10 random graphs): HSIC Lasso (Yamada, 2014), Backwards elimination (BE) with HSIC,
and Forward selection (FS) with HSIC for MB discovery (Song, 2007). Lacking space, we selected to examine the
most optimistic for the other algorithms case, that of large sample size (800) and two cases of small (20) and large
graphs (125 nodes), for sparse (0.2) and dense (0.5, more true causes) edges. We report the % of FP and FN in the
number of variables. In sparse large graphs FS gives more FP. Lasso and FS give more FP in small sparse and dense
graphs. BE performs worse in small sparse graphs. Overall, our method manages to keep FPs very low (~ 2.1%) for all
dense/sparse, small/large graphs, while other algos’ performance varies with the case. Optimal parameters based on the
true number of causes was selected for Lasso. BE and FS computations took significantly long. Furthermore, we stress
that in these simulations no hidden variables exist, which is an extra advantage for the compared algorithms.
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Data will be made public /lack of ground truth: The reason why there is no baseline comparison for our EEG results
is that this EEG data have not been used for causal inference analysis before, as we ourselves recorded it for this paper.
We will indeed make it public upon acceptance, to contribute this fascinating dataset to inspire further causality research
in this field that depends on it. Lack of ground truth is a common problem in brain datasets, which is why we compare
to conclusions and findings in the literature. Our findings are in accordance with established neuroscientific conclusions
about the brain rhythms present during movement in different conditions and we thus believe they are meaningful.
Sufficient but not necessary: The fact that our conditions are sufficient but not necessary may potentially lead to fewer
detected causes. Indeed, an empirical example of this was given in section A2, fig. 5 of suppl. submitted alongside the
paper, showing a case where both direct causes M; and M5 of target IR are rejected. In this example, P} and R are not
d-separated by M; because M is a collider. Moreover, P, and R are not d-separated by M, due to the path including
P, and M, . In this example there are instantaneous effects between the P and the M stages of the causes. This leads to
rejecting both causes. This is a counterexample where although the variables are causes of the target, our conditions are
not met; thus the (<) direction of our theorem cannot be proved, thus sufficient but not necessary.

Further explanation on the False Negatives fig. 2: Our method detects direct and indirect causes. If for example
A — B — C — D and E — D in the same graph, our method could identify as causes of D for instance F (direct)
and A (indirect). In that case, B and C will be counted as FN, because they were not identified. However, in reality,
this is not a problem, because we correctly identified A which is a cause of D (as well as of B and C), and so if we
intervene on A we will affect D, which is our ultimate purpose, supposing i.e. A, B, C, E are brain regions and D is
the arm speed. Therefore, the number of FN (suppl. fig.9) appears inflated because we consider as causes both the
direct and the indirect ones. In case only the direct cause is identified, then its ancestors (indirect causes) will be
counted as FN. That is why the number of FN increases with the number of features n and the density of the graph. We
stress that the reason why we care more about the FP, is because we address causal problems where a false rejection is
less harmful than a false acceptance. If a brain area is falsely identified as a target for stimulation it can be harmful,
compared to the harmless case that not all areas are identified. There is no free lunch, and this is a small price to pay to
get the linear computation time and the statistical significance of our CI tests with one targeted conditioning variable.
Improvements upon previous methods: 1. To the best of our knowledge, this is the first constraint based algorithm
that scales linearly with the number of variables. Previous methods based on CI tests grow exponentially in time with
the number of variables, (if sparse data then they grow polynomially), as they require more than one CI test per variable.
Therefore, we greatly reduce the computational complexity. 2. Our algorithm builds on tests that condition on only one
variable each; previous methods require conditioning on many variables. With this improvement, the statistical strength
of our inference is superior compared to cases where there is more than one conditioning variable. Furthermore, due to
this improvement, as reviewer #2 also pointed out, we require a weaker notion of faithfulness. 3. Our method does
not assume causal sufficiency - a common assumption which is, however, often violated in real datasets. 4. Finally,
although originally for completeness we assume i.i.d. samples, we prove in the suppl. that our method is robust against
false positives when the i.i.d. assumption is violated (common violation in real data).



