
We thank the reviewers for their helpful feedback and suggestions that will significantly improve the final version of the1

paper. The reviewers agree that the paper is well-written (R1, R3) and offers an original and significant contribution2

to the machine learning community (R1, R2, R3). In particular, the paper proposes an efficient framework for Cox3

processes that overcomes the limitations of the current state-of-the-art schemes (R1). The proposed technique is free4

from the curse of dimensionality, preserves most of the dependencies in the model and does not rely on assumptions on5

the covariance function (R3). Furthermore, the algorithm is scalable and offers competitive experimental results (R2).6

We hope our detailed response below will further highlight the paper’s quality and originality and persuade them to7

increase their overall scores. For this, we have attached the tag Q5 to some of our responses, indicating that we address8

Question 5: Improvements suggested by the reviewers that may yield to a score increase.9

R#1: (1) Factorization between the latent process and the latent locations. We can relax this assumption by considering10

a PPP with intensity
∫
X λ

?σ(−f(x))dx as the joint variational distribution q∗(M, {ym}Mm=1), which is indeed the true11

posterior [8]. In fact, we have implemented this approach (post-submission) and found out that while fully capturing12

model dependencies, it introduces a significant computational burden due to sampling from the full approximate posterior13

in the computation of T3. Empirically, this full posterior yields better uncertainty quantification but comparable point-14

performance metrics to those reported in the paper. Increasing the computational efficiency of this new approach15

remains an interesting research direction.16

(2) Q5: Higher dimensions. We thank reviewer for suggesting testing our algorithm on higher-dimensional data. While17

VBPP [19] does not currently support D > 2, we run our algorithm on the spatio-temporal Taxi dataset and found it to18

outperform MFVB [10] both in terms of performance metrics and uncertainty quantification, e.g. `test[×107] : −31.2619

vs −42.97. We will add this comparison in the additional page of the final version.20

R#2: (1) Clarity on marginal likelihood being optimized. This corresponds to integrating out all latent variables in21

Eq. 5 (after including the augmented GP prior), which is analytically intractable. However, we will show its relationship22

to the ELBO explicitly in the final version. Many thanks for the suggestion.23

(2) Q5: Optimal structure of q(y). As mentioned above, the optimal joint distribution q∗(M, {ym}Mm=1) is a PPP with24

intensity
∫
X λ

?σ(−f(x))dx , which we found to have comparable point-performance metrics. Critically, this fully25

structured posterior significantly increases the computational cost. The mixture of truncated Gaussians provides a26

flexible and computationally advantageous alternative, while satisfying the constraint of being within the domain of27

interest. See R#1 (1) above for more details.28

(3) Integral in line 157: We estimate this using Monte Carlo. As described in lines 159–163, the key to our approach,29

which distinguishes it from previous work, is that this integral does not need to be estimated accurately, as we only30

require it during optimization and, therefore, the quality of the posterior intensity does not depend directly on how31

accurate this estimation is.32

(4) Q5: Approximate ELBO due to Stirling’s approximation. The reviewer is correct in pointing out that the ELBO33

claim would need to be relaxed due to the use of this approximation. However, we have found out that this term appears34

with opposite signs in T2 and T4 and thus cancels out. We will clarify this in the final version but thank the reviewer for35

the insightful comment.36

(5) Stochastic optimization may obfuscate results. We first clarify that the CPU times and performances are directly37

comparable across all methods. Our results only include one source of stochasticity due to noisy gradient estimates38

arising from MC sampling. However, while we mention the possibility to use stochastic optimization techniques in39

lines 179–183, we refer to the use of a second source of stochasticity due to mini-batch optimization. None of our40

experiments actually exploit this. We will clarify this is the final version.41

(6 & 7) Minor edits: Many thanks for your suggestions, we will include them in the final version and the supplement.42

R#3: (1) Standard VI. We would like to highlight how, even though the variational inference scheme follows from43

standard arguments, by exploiting the structure of the model and the approximate posterior we increase the algorithm44

efficiency and avoid high-variance gradient estimates. Applying black-box variational inference naïvely to a stuctured45

posterior would require sampling f , λ?, M and {ym}Mm=1 thus slowing down the algorithm while leading to poor46

convergence.47

(2) Q5: Clarify how superposition view helps. The model double intractability arises first from the estimation of the48

integral of λ(x) in Eq. (1) and second from the standard posterior estimation which requires the computation of the49

marginal likelihood. The augmentation scheme helps us with the first intractability. By superimposing two PPP with50

opposite intensities we obtain an homogeneous PPP and thus avoid the integration of the GP over X . Instead, we only51

need to compute the measure of the input space
∫
X dx, see Eq. (4). We will expand on this in the final version.52


