
We thank the reviewers for their insightful comments. In the following we only address the major issues. The manuscript1

will be updated accordingly to reflect the clarifications made here.2

Reviewer #1 (I) [“Comparison to naive post processing”]: We recall that our function evaluations are expensive,3

and hence, throwing away evaluations during post-processing is undesirable. Our approach, in contrast, samples such4

that most of the function evaluations would have desirable characteristics, and hence, would be efficient. Consider5

the plots in Fig 1, given a preference-order constraint as “stability of f0 being more important than f1” in Schaffer6

function N. 1, i.e. ||∂f0∂x || ≤ ||
∂f1
∂x ||, Fig 1(left) illustrates the Pareto front obtained by a plain multi-objective7

optimisation (with no constraints). After the Pareto solutions are found (in 20 iterations), using the derivatives8

of the trained Gaussian Processes (actual objective functions are black-box), we can post process the obtained9

Pareto front based on the stability of solutions (lines 46 − 62 of the paper). Fig 1(left) shows that only 6
18 of10

these solutions have actually met the preference-order constraints. Whereas Fig 1 (right) shows that 16
16 of the11

obtained Pareto front solutions by MOBO-PC (in the same 20 iterations) have met the preference-order constraints.12
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Figure 1: Comparison between a naive post pro-
cessing approach (left) and MOBO-PC (right).
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Reviewer #1 (II), Reviewer #2 (I), Reviewer #3 (I) [“Background14

and related works”]: Including preferences over objectives in MOO15

problems for expensive functions dates back to Hakanen et al. 1. The16

authors proposed an interactive version of the ParEGO algorithm17

for identifying “most preferred solutions”. At each interaction, the18

decision maker is shown a subset of non-dominated solutions and19

she is assumed to provide her preferences in the form of preferred20

ranges for each objective. Internally, the algorithm samples reference21

points within the hyperbox defined those preferred ranges. This study22

required both interaction with user at each iteration and also prior23

knowledge about these hyperboxes. Recently, Paria et al. [14] (line24

330 of paper) introduced a new method to handle such constraints.25

However this method still requires prior knowledge about the hyperboxes of the form [[y1, ..., ym], [y′1, ..., y
′
m]] as exact26

location of the hyperbox in the objective function space (Rm). We were motivated to remove the need for such complex27

prior information. Our proposed method achieves this as it only needs information of kind “objective A is more28

important than objective B”, and nothing else. We also note that evolutionary methods are not discussed in this paper29

as they require many evaluations, and hence are not suitable for inexpensive functions.30

Reviewer #2 (II) [“Measurement of performance”]: We appreciate this question and agree that our current method31

of comparison through plots is subjective. However, we can define a measurement by checking how many of the32

Pareto front solutions satisfy the preference-order constraints. Based on Algorithm 3 (line 202 of paper), we can33

calculate the percentage of solutions that satisfy the preference-order constraints by using the gradients of the34

actual functions at iteration t. For example, in the case of Fig 1, all of the obtained solutions are complying with35

stability preference-order constraints. Our experimental results show 98.8% of solutions found for Schaffer function N.36

1 after 20 iterations comply with constraints. As for Poloni’s two objective function, 86.3% of the solutions follow37

the constraints after 200 iterations and finally for Viennet 3D function, this number is 82.5%. Given that the prior38

knowledge is not provided in [14] (line 330 of paper), the obtained results for their method with same experimental39

design and same number of iterations are 47.2% for Schaffer function N. 1, 29.6% for Poloni’s two objective function40

and 19.3% for Viennet 3D function respectively. This gap explains the importance of the prior knowledge about41

hyperboxes for their method. The reported numbers are averaged over 10 independent runs. We will include the42

comprehensive results based on the iteration number in the final version of the paper.43

Reviewer #3 (II) [“Usefulness and real-world example”]: We will use two real-world examples on stability and44

diversity to better illustrate the usefulness of MOBO-PC. (a) Stability: According to Chow et al. 2 a drug must be tested45

for stability before it can be released for human use. Testing the drugs on humans is a costly and potentially dangerous46

procedure. There are some vital signs routinely monitored (e.g. heart rate) in the testing procedure and the dosage of47

the drugs to be tested must be selected in a way that the practitioner can confidently confirm the positive effects of the48

drug (objective 1), yet make sure the vital signs such as heart rate (objective 2) remain stable. Considering these49

two objectives, finding stable solutions with respect to heart rate is essential. (b) Diversity: There are scenarios when50

diversity is crucial, e.g. the investment strategists generally looking for Pareto optimal investment strategies that prefer51

diversity in risk (objective 1) over return (objective 2) as they can later decide their appetite for risk. (c) Neural52

networks: As in neural network example (line 277 of paper), the goal is to illustrate that one can simply ask for more53

stable solutions with respect to training time of a neural network while optimising the hyperparameters. As all the54

solutions found with MOBO-PC are in range of (0, 5) training time (unlike the other methods).55
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