General We would like to thank all three reviewers for their suggestions – we’ve made these updates in our internal version and we believe the updated version is stronger as a result. We note reviewers were positive regarding novelty and significance, noting that the “theoretical and empirical analysis are new” and that “showing that unlabeled data alleviate[s] this problem [of robust sample complexity] is crucial because it is much easier (and cheaper) to collect.” Reviewers raised several questions regarding extensions of theoretical and empirical results, the relationship between theory and practice, and implementation clarity. We have investigated these, and briefly summarize our updates below.

Algorithm 1 UAT++ update

Input: Weight hyperparameter λ, batch size b_s and b_u

Sample b_s labeled examples $(x_s, y_s) \sim S_n$, b_u unlabeled examples $(x_u, y_u) \sim U_m$

Merge $x = [x_s; x_u]; y = [y_s; y_u]$

Compute loss $L = L_{adv}(x, y; \theta) + \lambda L_{OT}(x, y; \theta)$

Update with gradient $g = \nabla_{\theta} L$

R1 Different threat models. For L_2 robustness, we observe similar improvements from UAT, which we’ve added to the appendix. For example, on CIFAR-10 at L_2 radius $\epsilon = 0.87$, with 4K labeled and 32K unlabeled examples, the purely supervised model achieves 32.7% robust accuracy, the supervised oracle achieves 53.9%, and UAT almost matches this, with 55.2%. This represents a 21% absolute gain from using unlabeled data, which captures over 90% of the oracle improvement, without using labels. We observe similar results for $\epsilon = 0.435$, of 47.3% / 70.3% / 66.3% respectively.

Theoretical analysis of UAT-OT. It’s a good question. We have focused in the paper on UAT-FT, since it performs significantly better in our experiments. We are confident a similar result should hold for UAT-OT, using a single label. The rough intuition is that, with many unlabeled examples, the OT loss ensures that the single label is necessary only to determine the sign of $\langle \hat{w}, \theta^* \rangle$. We will add a comment on the analysis of UAT-OT.

R2 What is the proper amount of unlabeled data m? We understand this as two questions - how theory explains our empirical observations, and why VAT outperforms UAT++, on SVHN when m is small. For the first question, the theory suggests performance should increase monotonically with m - indeed, our experiments validate that unlabeled data always helps, and that larger m strictly improves performance. Regarding the second, we find UAT++ outperforms VAT when hyperparameters are properly tuned. In our original SVHN experiments, we directly reused CIFAR-10 hyperparameters. We find it reassuring that even with zero hyperparameter tuning, these original results are qualitatively consistent: using unlabeled data provides vast improvements over labeled data alone, and UAT++ outperforms baselines, particularly in the $m \gg n$ case we view as important for practical applications. After re-tuning learning rates for all models, the figure above shows that UAT++ outperforms VAT for all m.

Performance drop with increasing m in Table 1. You’re right that UAT is not robust to arbitrarily out-of-distribution unlabeled examples, and we’ve clarified the text accordingly. Qualitatively, we observe greater distribution shift in 80m@500K than in 80m@200K. Our main point is that UAT is moderately robust to distribution shift, sufficient for us to leverage uncurated data to achieve SOTA robust accuracy. This is indeed only a first step – we’re excited to see future research into more effective ways to leverage uncurated, and further out-of-distribution data.

R3 Related literature. We agree that the three papers mentioned provide useful perspectives on robust sample complexity. Thanks for mentioning them - we’ve expanded the discussion of this in the updated paper.

Pseudocode. We agree – we’ve significantly updated our appendix with these details, notably pseudocode, but also experimental procedures, hyperparameters, ablations, and negative results. We’ve added a significant section on pseudocode, which we can’t include here for space. Algorithm 1 shows the UAT++ update (the others are similar). To simplify notation, when writing $(x, y) \sim U_m$, the target y is always the fixed target pseudo-label. L_{adv} and L_{OT} are the empirical estimates of the robust loss from Madry et al, 2017 (as in UAT-FT) and L_{OT} respectively. These loss terms are also further detailed in our updated appendix.

How many labels are required? Short answer: not many. Most papers train with 50K labels on CIFAR-10, but we show that using UAT allows going from 36K to 4K labels, while maintaining adversarial accuracy – robust accuracy against FGSM-20 only decreases from 55.5% to 54.1%. Long answer: in the Gaussian model, provided sufficient unlabeled data, only a single label is necessary. Qualitatively, the theoretical model suggests that UAT only needs sufficient labels for natural generalization (as opposed to robust generalization), which in the Gaussian model is just a single label. To study this in practice, we tried pushing to even lower label regimes on CIFAR-10, and still observe significant adversarial accuracy (now added to appendix): 2K labels yields 51.9%, and 1K yields 47.7% under FGSM-20.