
Thank you to the reviewers for their helpful comments.1

Reviewer #32

Regarding affine relationships between positions: we agree that a transformer’s layers do not produce simple affine3

transformations. However, each layer’s query and key transforms are affine. In the original transformer, the sinusoidal4

positional encodings can index a relative position in the sequence using a linear transformation: say position pos5

is represented by a positional encoding PEpos, then positional encoding of pos + k can be reconstructed using a6

transformation matrix A+k, so PEpos+k = A+kPEpos, allowing query and key transformations to model relative7

postitions. (This is explained in more detail in our response to Reviewer #4.) This lets the model easily attend to relative8

positions along the sequence.9

In our paper, we want our tree positional encoding scheme to share this property, so that the model can easily attend to10

relative positions in the tree. Each individual move up or down the tree can be captured with an affine transformation,11

and a series of moves can be represented as the composition of their affine transformations. We will expand Figure 1 to12

include example positional encodings and the matrices that transform them, generally review Section 3 carefully.13

Overall, we’ll make a careful pass of this section of the paper to improve readability. We’ll also provide further14

background about each of the datasets considered.15

Reviewer #416

Regarding lines 72-74, which claim that the calculations of any element of a sequence are independent of the order17

presented, we can cite the original transformer paper (Attention is all you need), which says this in section 3.5: “Since18

our model contains no recurrence and no convolution, in order for the model to make use of the order of the sequence,19

we must inject some information about the relative or absolute position of the tokens in the sequence. To this end, we20

add "positional encodings" to the input embeddings at the bottoms of the encoder and decoder stacks.” The XLNet21

paper (https://arxiv.org/pdf/1906.08237.pdf) also exploits this property: holes can be introduced in the middle of the22

sequence, because order is captured using only positional encodings.23

Regarding line 88, which claims that relationships between sequential positional encodings are modeled by affine
transformations, we can again cite the original transformer paper: “We chose this function because we hypothesized
it would allow the model to easily learn to attend by relative positions, since for any fixed offset k, PEpos+k can be
represented as a linear function of PEpos.” The original paper defines positional encodings as follows:

PE(pos,2i) = sin
(
pos/100002i / dmodel

)
;PE(pos,2i+1) = cos

(
pos/100002i / dmodel

)
Relative movements in position encodings can leverage the following identities:

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β); sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

The transformation that attends to a position offset by k is a block diagonal matrix, using the identities above to shift24

each position accordingly.25

Regarding lines 107-108 and 117-119 (the tree transformations and their preservation of movements up to depth k)26

we’ll spell this out in more detail. In effect, our positional encoding acts like a stack, where a downward movement27

pushes on a particular child position to the end of the stack, and an upward movement pops off the last position from28

the stack. Because our stack has fixed dimension, once we push too many elements onto the stack, we lose information29

about the root.30

Regarding “lack of richness”: we did find that parameter-free approach did not work as well in practice. Richness is31

perhaps a poor term here, as the parameters don’t add extra computational power over the initial projection matrix.32

Rather, the parameters induce a bias during training time by correlating nodes at the same depth. We believe this bias33

helps the model incorporate the kind of information seen in the example heatmaps included in our figures. We will34

rewrite this section to explain this intuition better in the revised draft.35

We’ll improve the notation around lines 111 and 112 to clarify that the Di and U operations can act upon any node,36

and we will expand Figure 1 to include an example of positional encodings that result from applying these operations.37

Please note that in Equation 1, Di is not defined as a function of x – rather, the left-hand side is the matrix-vector38

product of Di and x.39

Although we did not evaluate the positional encodings in any tree-to-sequence setting, one can use tree positional40

encodings on the encoder side and the original sequential positional encodings on the decoder side to represemt41

tree-to-sequence mappings.42

Thank you for your suggestions on citing uncited figures and reformatting citations. We will incorporate these into the43

revised draft.44


