
We thank the reviewers for their constructive suggestions and insightful comments. We have (1) added simulations for1

Bayesian Causal Forests and (2) have substantially expanded the discussion in the final version to address the various2

reviewer comments. A summary of the added discussion is provided point-by-point below.3

Reviewer 1: π is not assigned a prior. We use an empirical Bayes approach, which is, as the reviewer points out,4

computationally much faster than a fully hierarchical Bayesian approach of placing a prior on π. For Gaussian5

processes (GPs), since our approach reduces to modifying the prior covariance, the posterior can be computed using6

standard computational tools for GPs. Conversely, one can only sample from the hierarchical Bayes posterior using a7

Metropolis-Hastings-within-Gibbs-sampling algorithm, which is far slower in practice.8

π requires a prior. Please note that we consider independent priors on (m,π, F ) (for computational reasons), so that9

the posterior also factorizes and hence the π term is conditionally independent of ψ (see lines 94-107 and Appendix A).10

Comment on Table 1. The reason for our high coverage is that our posterior bias, due to our explicit ATE bias11

correction (4), is (much) smaller than the posterior variance by design. As the reviewer correctly points out, asymptotic12

theory predicts the frequentist coverage should converge to 0.95 as the sample size increases due to the semiparametric13

Bernstein-von Mises theorem (cf Ray & van der Vaart (2018)). However, it is a subtle question as to when the asymptotic14

regime applies and our examples seem insufficiently data rich for this to be the case (e.g. n = 1000 observations but15

d = 100 input features).16

Missing organizational section/reference for bias/language precision. We have incorporated these suggestions.17

Reviewer 2: Variable selection for causal inference. We consider here a GP with squared exponential kernel with18

automatic relevance determination (ARD), i.e. whose data-driven lengthscale `i represents the relevance of the ith19

feature to the response surface. ARD has been used successfully for removing irrelevant inputs by several authors (see20

e.g. Chapter 5.1 of Rasmussen & Williams (2006)) and can thus be viewed as a form of automatic (causal) feature21

selection. Diagnosing missing significant covariates (confounders) is an important and difficult problem which requires22

further investigation in the future.23

Reviewer 3: Comparison with Hahn et al. We would firstly like to clarify that our goal is to improve estimation of24

the average treatment effect (ATE) in the presence of heterogeneous treatment effects. It is known that naively using25

product priors in casual inference/missing data problems can yield biased inference [this goes back to at least Robins26

and Ritov (1997). The ’regularization-induced confounding’ of Hahn et al. is a very nice illustration of similar ideas27

for the concrete and important cases of linear models and BART priors]. One solution is to reparametrize to force the28

missing information into the likelihood (e.g. Ritov et al. (2014), Hahn et al. (2018)), while another is to use propensity29

score (PS) information (Rosenbaum & Rubin (1983)).30

In a nice paper Hahn et al. (2017) successfully show that this latter idea also helps Bayesian estimation using BART.31

Their approach is designed to improve nonparametric estimation of the whole response surface, which will also lead to32

some improvement when estimating the ATE. However, it is known that even when the prior is perfectly calibrated (i.e.33

all tuning parameters are set optimally) and recovers the entire response surface at the optimal rate, the posterior can34

still induce a bias in the marginal posterior for the ATE ψ that prevents efficient estimation and destroys uncertainty35

quantification (see e.g. Ray & van der Vaart (2018)).36

The specific form in which we include the PS in our prior (4) is very deliberate - it arises as the ’least favorable direction’37

of the ATE in semiparametric statistical theory and is specifically designed for estimating the ATE. When either the PS38

or response surface are especially difficult to estimate, we expect that incorporating the PS as a covariate as in Hahn et39

al. (2017) will still induce a bias for the ATE (the theory in Ray & van der Vaart (2018) predicts this). In fairness, we40

wish to emphasize that Hahn et al.’s goal is to estimate the entire response surface, for which they provide excellent41

results, which is a different problem to estimating the ATE we consider here.42

Bayesian Causal Forest (BCF) simulations have been added to the paper. In summary, for estimation BCF performs43

well on the synthetic data (but moderately worse than our method in both the homogeneous and heterogeneous cases)44

and excellently on the semi-synthetic data (moderately better than our method). For uncertainty quantification, BCF45

typically had the shortest credible intervals with suboptimal coverage (80-85%) on the various synthetic datasets and46

excellent coverage (∼95%) on the semi-snythetic data.47

Estimation of F . We use the widely used ’Bayesian bootstrap’ (BB) since (1) it is computationally much faster (you48

need only one costly Cholesky decomposition to generate posterior samples of the ATE whereas with the full Dirichlet49

process (DP) posterior we require one per posterior draw) and (2) for moderate/large sample sizes it is very close to the50

true DP posterior. We do not assume that ’one has observed all possible covariates’, rather that our covariate samples51

are representative of the population. If the observed covariates greatly differ from the underlying population distribution52

then indeed this will not generalize well, but then neither will any prior not involving detailed outside expert information53

for that particular application.54


