
We thank the reviewers for detailed comments and helpful suggestions. We will incorporate them to improve the paper.1

Reviewer 1 — To normalize variable (and function) names, we create a vocabulary of N new identifiers. For each2

program, we derive a random map from variable names to the new identifiers, and rename all occurrences of a variable3

with its corresponding identifier. This ensures that the program semantics does not change. We ensure that the size4

N of our vocabulary is larger than the number of variables in any program in the dataset. This method of reducing5

vocabulary sizes has been used before in the literature (e.g., [11]).6

Network architecture: The reviewer’s summary of the embedding layer is correct (L170-L171). We will add more7

details in the figure as suggested by the reviewer. The first model we tried was more complex and had two more8

convolutional filters overlapping 2 and 4 rows of the encoded matrix with the strides of 2 and 4, respectively. Through9

experimentation, we found that removing those filters did not affect the performance of the network but helped in10

increasing training efficiency. We also tried RNNs (please see response to reviewer#2).11

Stride size 3 is used for a convolutional filter spanning 3 rows. So subtree rooted at Node 3 will be analyzed as part of12

the first 3 rows (Fig 3b). Separately a filter spanning 1 row at a time with stride of 1 (L175-L176) will also cover it.13

Comparison with baselines: Given a program, the actual class (success or failure) for a test can be obtained by14

executing the program. If the classifier predicts success for a test that actually fails, querying the gradients in that15

case is unlikely to give a meaningful result. Thus, our approach is to be used when the classification is correct and16

under this setting, we demonstrate that our approach is competitive with (or even better than several configurations of)17

human-designed SOTA approaches. We will elaborate on this in the paper.18

Use of passing tests in Tarantula and Ochiai: Tarantula and Ochiai use coverage metrics over lines (called program19

spectra), obtained by executing passing and failing tests, and calculate the suspiciousness score for each line based on20

some empirical formulae. The different configurations in Table 1 indicate how many passing tests were used in the21

comparison. We will explain this more.22

Generalizability to other settings: We exploit similarity between code along with prediction attribution for semantic23

bug localization and demonstrate it for student code. In the industrial setting also, code similarity abounds due to code24

reuse and cloning. Large scale studies (see "On the naturalness of software", ICSE’12) have demonstrated that code25

tends to be quite repetitive (similar to natural language utterances). The practice of version controlling results in similar26

but evolving copies of code, which are typically subjected to regression testing (L341). Though more experimentation27

will be required, we expect our approach to be useful in these settings.28

Reviewer 2 — Comparison with RNNs: We experimented with an attention-based LSTM network for failure29

prediction. Training it took more than two days and the performance of prediction attribution was not as good. In30

comparison, the proposed tree CNN took only one hour to train (L252) and enabled better attribution.31

Use of test IDs vs the complete tests: Embedding a unit test along with the program is a great suggestion. This can32

improve prediction accuracy and attribution, particularly when test code implements some protocols to set up the input33

objects (such as files). However, in our current setup involving student code, the tests consist of raw inputs and outputs,34

and lack useful structure. We therefore use only test IDs.35

Evaluation section and significance of results: We will reword the evaluation section to make it more clear. Our36

results show that our technique is competitive to the SOTA dynamic bug-localization techniques which require program37

instrumentation and collecting program-spectra through multiple executions. We also show that it completely outper-38

forms a naive static approach that uses syntactic difference between a buggy program and its reference implementation39

for bug-localization.40

The percentages shown in the Table 1 correspond to recall. Precision can be calculated by dividing the number of41

lines localized by the number of predictions made (= number of programs multiplied by k, where k is the number of42

suspicious lines reported). Precision values come out to be 0.1, 0.14, and 0.21 when k is set to 10, 5, and 1 respectively.43

Scaling to larger programs: We envision the use of our technique at the level of unit tests where methods are tested44

individually. While method bodies can be large at times, typically they are (encouraged to be) short. Nevertheless,45

owing to the fast training possible for tree CNN (L252), we are positive about scaling our technique to larger programs.46

Reviewer 3 — Classification w.r.t. one test: As the reviewer points out, our classifier analyzes one test at a time. It is47

an interesting future direction to do localization using entire test suites instead. The dataset-level attribution methods48

(e.g., based on clustering), called global attribution methods, will be useful in this context.49

Runtimes for bug localization: It takes us 4.69 seconds for calculating the embeddings for 8086 correct programs50

across all the programming tasks (0.5 ms per program). For finding attribution baseline and then performing bug-51

localization through attribution, it takes about 0.67 seconds per program. We will add these to the paper.52


