
Table 1: µ accuracies ±σ of the main experiments.
dis. MNIST, M=300 perm. MNIST cifar-10

Random 37.5± 1.35 72.7± 1.45 28.6± 1.23
GSS-IQP 75.9± 2.54 77.3± 0.54 -

GSS-Clust 75.7± 2.17 79.9± 0.69 22.5± 0.43
FSS-Clust 75.8± 1.56 77.8± 0.33 26.7± 1.47
GSS-Greedy 82.6± 2.9 77.3± 0.50 33.5± 1.62

We thank the reviewers for their valuable comments. We want1

to emphasize that our work is the first to tackle the problem2

of online continual learning with no task boundaries, i.e. dif-3

ferently from other methods e.g. GEM, iCaRL, we receive no4

information when task T1 switches to T2, which makes the5

input stream highly non iid at the boundary. Our method is thus applicable to scenarios of continual learning when task6

id is unknown. We will expand the related work and improve the presentation of the figures and the tables.7

Error bars? larger variance for greedy? Tab. 1 reports the main results with their standard deviation estimated over8

the different runs. This confirms that the advantage of our method is statistically significant.9

R1: What if no feasible region exists (empty C̃)? This is a good point. When the data contains outliers it is an10

open question how to distinguish outliers from under-represented examples. As for this writing, we don’t consider the11

existence of outliers. Nevertheless, our method should still work with outliers: 1) Our surrogate considers pairs of12

samples, although the outlier is likely to be selected, pairs that don’t contain the outliers will not be affected. 2) Rigorous13

satisfaction of the constraints is not possible in non-convex neural networks, it is converted to soft regularization.14

Fig 2 , bigger range of angle/surrogate values? The range of the solid angle is already from 0 to 1 which is the full15

range of solid angle. In the log scale it may seem truncated because we omit zeros which is negative infinity in log scale.16

Which constraints are typically satisfied or violated? The samples are selected to be diverse, and the discarded17

samples usually have similar counterparts in the buffer. We found the selected samples to cover the different patterns18

learned classes leading to a balanced buffer even with an imbalanced data stream.19

iCaRL CIFAR-10 low. We consider online incremental classification, differently from iCaRL, Ln 294. iCaRL performs20

offline training with large batches and repeatedly revisiting over the classes of a task.21

Computational improvement of GSS-greedy? For our greedy alternative, the major cost corresponds to the estima-22

tion of the n gradients of the drawn samples, n was fixed to 10 in all our experiments. For clustering based sample23

selection, the features/gradients of the buffer samples and the corresponding distances need to be computed at each step.24

R2: Clarification on high level picture We start from the constrained optimization view of continual learning like in25

GEM, which needs to be relaxed by constraint selection. Instead of random selection, we perform constraint selection26

by minimizing the solid angle formed by the constraints. We propose a surrogate for the solid angle objective, and show27

their relation numerically. Finally we test the effectiveness of the surrogate on continual learning benchmarks.28

High dimensional space and when the buffer is large? We only perform the numerical analysis of the monotonous29

correlation of the solid angle and the surrogate up to 200 dimension, because the complexity of Monte-Carlo integration30

increases exponentially with the dimension. Empirically we verified with experiments with a buffer size up to 1k and31

show it is still effective. We also showed another interpretation of our surrogate i.e. to maximize the diversity of the32

samples in the “gradient” space. We believe diversity maximization is likely to still work in high dimensional space.33

Maximising diversity is similar to existing coreset algorithms / coverage maximisation? A key difference is that34

we consider the diversity in the gradient space instead of data space. The coverage maximization reported are performed35

in the data space using euclidean metric, which is not working equally well for high dimensional data like image, (Fig. 736

in the coverage maximisation paper). Our contribution is the proposal of using gradient information to measure diversity37

which is supported by the constrained optimization (Eq. 1). We considered two incremental clustering baselines, in the38

feature space and in the gradient space, and showed that our approach is superior (Tab. 1,3,4 in the paper).39

Methods that combine replay with parameter regularisation criticized? We state that hybridizing prior focused40

with replay based is necessary to achieve better performance on long sequences, Ln 27-29. Also, there’s a difference41

between the two "regularizations". The one mentioned in the intro is the prior focused regularizing the parameters while42

the regularization mentioned later is about converting the hard constraint into a regularization term i.e. rehearsal.43

More standard benchmarks? We opt for more realistic setting with online training with non stationary distribution44

and never ending training. This is already the standard setting considered in GEM but with multi-head. Our method45

aims to solve the hard setting and not the task incremental setting where a task oracle is used at training and test time.46

R3: Consistency analysis for the greedy method? As increasing n to M, is it equivalent to the IQP method? For47

greedy, the drawn samples are used to estimate a score of the new sample indicating its similarity to the buffer samples.48

IQP is exact and solves the surrogate, Eq.7 at each step. Greedy keeps scores of buffer samples once added which relate49

to their chance of being replaced. We fixed n to 10 on all settings. We abate the effect of n with dis. MNIST, M= 300.50

We get the following accuracies n=1:67.3, n=5:79.0, n=10:82.6, n=20:79.6, n=30:79.9, n=40:78.4, n=50:78.3.51

Batch size effect. We want to be as close as possible to the full online setting. Batch size of 10, used in GEM, seems a52

good approximation. We run dis.MNIST, M=300, with different batch sizes. The mean accuracies of GSS-greedy are53

B=5:82.9, B=10:82.6, B=20:84.23, B=50: 80.2, B=100:72.9. Large batch sizes lead less parameter updates.54

Random high accuracy on T4. Its buffer has very few samples from previous tasks, 24 for T1-T3, and more from the55

recent T4 (127) & T5 (849) given M= 1k. As such, it forgets less the more recent task at the cost of older ones.56

Backward Transfer. It is shown in GEM with multi head, i.e. when evaluating a task, only its classes are considered.57

Under shared head this is different. When a task is first evaluated, fewer classes are learned and others will have low58

accuracy. At the end of sequence, all classes compete which makes backward transfer hard to achieve.59


