
We are grateful to the reviewers for their thoughtful comments which have improved the work. Below are responses to1

each and every point of the reviewers (where we refer to the same references in the reviewer 2’s comments):2

Reviewer 1: We thank the reviewer for the positive comments. 1a. The dependence of the constant C in Theorem 23

on the parameters (such as α) is complicated due to the delicate nature of our chaining method, so we did not write4

down the constant explicitly. We will carefully address which parameters that the constant C depends on. 1b. We5

appreciate the reviewer’s excellent suggestions on the writing structure, we will rewrite lines 29-30 and move lines6

52-55 (the motivation of introducing distributional robustness) to follow the formal introduction of our model. 1c.7

We thank the reviewer for pointing out the typos in our paper. The inf in line 45 refers to the infimum of a set, so8

we don’t have to add a subscript for it. We will follow the reviewer’s advice to correct the other typos. 2a. Although9

the Weibull-type condition is already a significant generalization of related assumptions which are standard in convex10

regression formulations, we agree that weakening to finite moments assumption is a very interesting direction to explore11

in future work. We also thank the reviewer for bringing up the ideas of robust statistics. In our problem, we care about12

the shape of the estimator, it is not clear how estimators such as Huber-type M-estimators can be modified to preserve13

the convex shape, but this is also an interesting direction to explore. 2b. Please see our response to 4 of Reviewer 2.14

Reviewer 2: We thank the reviewer for the insightful comments. 1. We appreciate the reviewer for bringing [2] to us,15

and we agree that it is important to illustrate the similarities and differences between [2, Theorem 1] and our result. The16

main difference is, the loss function in [2, Theorem 1] is required to be a composition of a Lipschitz function l : R→ R17

and a linear function of x, y, due to the non-linear nature of our convex regression model, this result does not apply to our18

case directly. Besides, our approach also allows l be function maps R2 to R. However, we agree that the proof of the two19

results share a similar idea: we apply the dual representation of the standard Wasserstein-based distributionally robust20

optimization problem, and then lower bound the dual parameter λ using the structure of the loss function l. Moreover,21

we will follow the reviewer’s advice to cite other results similar to Lemma 1. 2. The new interpretation of equation (2)22

that relates our problem to covariate shifting is very interesting, we will add this point to our submission. 3. We thank23

the reviewer for giving us the chance to illustrate our contribution beyond the results in [4]. First of all, their results only24

focus on problems with finite dimensional decision space (or feasible set X, in the words of [4]), while in our case the25

decision space Fn is clearly infinite dimensional. Secondly, to the best of our understanding, the concentration result26

([4, Theorem 3.4], or [1, 6]) allows us to choose a proper δn such that the Wasserstein ball centered at Pn (the empirical27

measure) with radius δn covers the true underlying probability measure P (see [4, Theorem 3.5]) with high probability,28

and as a consequence we can appropriately choose δn to ensure the consistency of the estimator of the optimal decision29

variable (see [4, Theorem 3.6(2)]). However, it is non-trivial to identify the convergence rate of the estimator. For30

example, for finite dimensional decisions, such convergence rates should match the canonical rateO(n−1/2). The choice31

of δn suggested in [4] does not provide the canonical rate, so it doesn’t seem that the results in [4] are directly applicable32

to recover convergence rates for estimators; not even in the finite dimensional case which is the environment of [4], let33

alone the infinite dimensional case, which is the setting of our paper. 4. We thank the reviewer for raising this issue, and34

we are agree with the reviewer’s opinion from the optimization point of view. However, there is a technical statistical35

reason behind our formulation. On the one hand, the penalty term δn‖∇f‖∞ captures the impact of the uncertainty36

set {P : D(P, Pn) ≤ δn}. On the other hand, the log n constraint introduced in Fn is related to a compactification37

argument applied to the decision space. This issue is particularly important in the current setting of infinite dimensional38

decisions. The current formulation provides one possible tradeoff of these two effects that guarantee the estimator f̂n39

converges to f∗ with order Õ(n−1/d). Furthermore, the log n constraint already relaxes the typical assumption that40

‖∇f‖∞ < C (in which C needs to be known apriori). Finally, we will provide a formal proof of the optimality of41

piecewise affine functions. 5. We appreciate the reviewer’s suggestions of adding experiments on real world data. We42

consider a public dataset from United States Environmental Protection Agency, which was suggested by [R. Mazumder,43

A. Choudhury, G. Iyengar, B. Sen, A Computational Framework for Multivariate Convex Regression and its Variants].44

Method Training loss Test error

DRCR 0.1238 0.1294

LSE 0.1485 0.1516

LR 0.1691 0.1692

The dataset consists of 600 air market data of California in the first quarter45

of 2019. The response was the amount of heat input with the covariates46

corresponding to the amounts of emissions of SO2, NOx, CO2 (in tons) and the47

NOX rate. Empirical evidence suggests that relationship between the response48

and the log transformation of each individual covariate can be modeled well by49

a convex fit, so we do the log transformation on covariates and then standardize50

the data. Since we never know f∗ in real data, we can not evaluate our51

method in the same way as the submitted paper. Instead, we randomly split52

the dataset into a training set with 400 data and a test set with 200 data, and53

we implement three different approaches: DRCR (our estimator), LSE (standard convex regression estimator) and LR54

(linear regression). We repeat the experiment 10 times and then compare the average training l1 loss and average test l155

error. We summarize the results in the table on the right, it is clear that our method outperforms both LSE and LR.56

Reviewer 3: We thank the reviewer for the positive comments.57


