
[[ Reviewer 1 ]] Thank you for your feedback. We will fix the reference formatting in the final manuscript. � Statistical1

significance: In Table 2, we have already included the 95% confidence intervals obtained via stratified cross-validation.2

In the final manuscript, we will include the p-values and confidence intervals for the results in Figures 5 and 6 as well.3

� Summary section: Thank you for this suggestion. To address this comment, we will move Subsection 2.4 (lines 1454

- 159) towards the end of Section 3, and add a summary of the inference algorithm to this Subsection.5

[[ Reviewer 2 ]] Thank you for the valuable comments and suggestions. � Minor questions: Number of states were6

selected based on the BIC criterion, and the selected number conformed with existing clinical guidelines (please7

refer to response “Disease phenotypes” for Reviewer 3). Model parameters were initialized via K-means clustering8

applied to the unrolled time-series data. � Inference-related questions: Simpler inference algorithms recover emission9

distributions similar to our algorithm but do a poorer job in recovering state dynamics (transition probabilities and10

attention weights). Consequently, the predictive accuracy of mean-field and Markovian inference were better than11

HMMs but slightly worse than RNNs. Accuracy results for both inference strategies will be added to the supplementary.12

� Originality & baselines: To emphasize the difference between our model
and variants of HMMs, we have collected new results for extra baselines in-
cluding a 4th-order HMM (4-HMM), a Hidden Semi-Markov model (HSMM),
and a factorial HMM (FHMM). Among these, the most competitive was the
4-HMM, but its (predictive) performance was still significantly worse than the
RNN benchmark. The reason our model outperforms HMM variants is that it
adapts its state dynamics in a non-stationary fashion via time-varying attention
weights. The Figure above depicts one patient’s trajectory by visualizing the
attention weights allocated to previous states as they are being updated each
time step. As we can see, the model exhibits Markovian dynamics towards
the beginning and the end of the trajectory, and non-Markovian dynamics in
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the intermediate steps. Each patient will have their own attention profile (and hence their own contextualized state14

dynamics) based on their individual clinical observations. This enriches the discriminative power of our model15

compared to HMM variants that entail stationary/fixed dynamics. � Rao-Blackwellization: Given the distributional16

specification in Section 2 and an RNN estimator RNN(x, z) of the posterior state distribution, it can be shown17

that our inference network is equivalent to the conditional expectation E[RNN(x, z) |T (x, z)] with respect to the18

sufficient statistic T (x, z). The sufficient statistic in our model is the attention weight sequence, i.e., T (x, z) = α.19

The proof of this equivalence follows from the seminal work on Rao-Blackwellized particle filters in [R2]; we will20

provide the corresponding derivation for our model in the supplementary material. As pointed out by the reviewer,21

Rao-Blackwellized estimators reduce the estimation variance: we will demonstrate that our algorithm minimizes22

the estimation variance by annotating the cross-validation variance of all estimators in Figure 4. � Uncertainty:23

Reliability/stability of phenotype inferences were judged by the variance of model parameters obtained via 5-fold24

cross-validation: all findings were statistically significant (refer to response “Statistical significance” for Reviewer 1).25

Posterior model uncertainty can be easily quantified via test-time Monte Carlo dropout applied to the inference network26

as in [R1], without any modifications to our algorithm. A fully Bayesian approach with priors over model parameters is27

also possible. Detailed discussion on uncertainty quantification will be added to the final manuscript.28

[[ Reviewer 3 ]] Thank you for the helpful comments and suggestions. In the final manuscript, we will fix the typo29

in line 183 (Q6) and add a supplementary Section with details on the factorization in line 177 (Q4). � Irregularly30

spaced visits (Q1): Our framework can be straightforwardly extended to the continuous-time (CT) setup by replacing31

the discrete-time RNNs in the model and inference networks with CT RNN models such as phased LSTMs [R3]. Since32

phased LSTMs also handle asynchronous observations (See [R3]), the inference network can be trained to update the33

posterior state distribution based on partial observations at arbitrary time steps, emulating a “memoryful CT HMM”. We34

have already implemented this variant of our model based on phased LSTMs — a related discussion will be added to35

the supplementary. � Disease phenotypes (Q2, Q3 and Q8): The model does not need to be restricted to the number36

of states for existing phenotype schemes (Q1). In general, model selection criteria — such as the Bayesian information37

criterion (BIC) — would be used to select the number of states in a data-driven fashion. In our experiment, the number38

of states selected by BIC matched that of existing phenotypic scheme. As it is the case in all unsupervised setups, the39

meaningfulness of the states cannot be guaranteed and will have to be judged by experts (Q2). Backward transitions in40

CF are possible through prescriptions of antibiotics. Monotonic progression (e.g., in Kidney diseases) can be easily41

encoded in our model by setting the relevant transition parameters to 0 (Q8). � NNL (Q7): In the final manuscript, we42

will replace the in-sample NNL (Figure 4) with the held-out NNL. Note that in all of the 3 cases in Figure 4, the model43

is fixed and only the inference strategy is changed. The NNL displayed in Figure 4 is the true LL and not the ELBO.44

References: [R1] Y. Gal, et al. "Dropout as a Bayesian approximation: Insights and applications", ICML, 2015. [R2] A. Doucet,45

et al. "Rao-Blackwellised particle filtering for dynamic Bayesian networks." UAI, 2000. [R3] D. Neil, et al. "Phased LSTM:46

Accelerating recurrent network training for long or event-based sequences." NeurIPS, 2016.47


