
We would like to thank all three reviewers for acknowledging our contributions and providing valuable feedback. Please1

find our responses to your comments below.2

Reviewer #1:3

Thank you for the positive comments on the novelty of our idea and insightful questions for further improvement.4

We first characterize the solutions of DEAN. Let px and px′ be the distributions of real and fake data; pe denotes the5

energy-based distribution. In DEAN, pe is a bridge connecting px and px′ . Now we provide two theorems for the6

characterization. For the IGN, the network is trained to have px′ equal to pe. Please refer to Theorem 1, which is proved7

based on Theorem 1 of [JXS+17]. For the EGN, pe is learned to estimate px. Please see Theorem 2, which is proved8

according to Theorem 1 of [ZML17] and Theorem 1 of [GPAM+14]. At present, Theorem 2 is proved with Λ(θe).9

Other choices for the energy objective will be left to future works. Detailed proofs of the following theorems will10

be given in the Supplement of the final version. Different from GANs, which are implicit generative models (IGMs),11

DEAN can explicitly estimate the underlying distribution of the real data after estimating θe and θg .12

Theorem 1 We assume that Dx′ is drawn from px′ . If the following conditions are satisfied: κ is a universal and13

analytic kernel; Ea∼px′Eb∼pe

[
sT(a)s(b)κ(a, b) + sT(b)∇aκ(a, b) + sT(a)∇bκ(a, b) +

∑d
i=1

∂2κ(a,b)
∂ai∂bi

]
< ∞ with14

s(a) = ∇a log pe(a); Ea∼px′‖∇a log pe(a)−∇a log px′(a)‖2 < ∞; lim‖a‖→∞ pe(a)g(a) = 0, where g(·) is given15

in Eq. (2) in Section 4.2; for any J ≥ 1, almost surely FSSD[pe,Dx′ ] = 0 if and only if px′ = pe.16

Theorem 2 Let Λ(θe) = E(x; θe) +
[
γ − E

(
G(z; θ∗g); θe

)]+
(please refer to Eq. (1) in Section 4.1 for details). The17

minimum of Λ(θe) is achieved if and only if pe = px. With the optimized θ∗e ,
∫
x,z

Λ(θ∗e)px(x)pz(z)dxdz = γ.18

Following your suggestion, we compare the powers (successful rejection rates) of MMD, linear-time MMD [GBR+12]19

and FSSD on toy problems, where MMD is a two-sample test statistic and FSSD is used for the GOF test.20
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Figure 1: Rejection rates for d = 1 (left) and d = 3.

We adopt the distributions Gaussian p(x) = N (x|0, Id) and21

Laplacian q(x) =
∏d
i=1 Laplace(xi|0, 1/

√
2) for d = 1, 3, in22

which the parameters are set to make p and q have the same mean23

and variance so that the difference between p and q is subtle. F-24

SSD shows a higher power to discriminate the subtle difference25

(Figure 1). For larger sample sizes, the power of MMD is close to26

that of FSSD. However, in the GAN-type training, the batch size27

is usually less than 512. As the adversarial training continues, the28

distribution of the generated data gets closer to the energy-based29

distribution, and hence the difference becomes subtle. At this30

time, the power (discriminability) of FSSD for the subtle differ-31

ence becomes important for generating high-quality images. Hopefully we have cleared up your main concerns with32

these theoretical and experimental discussions. We believe that the DEAN paradigm is promising, being versatile to33

yield specific training algorithms for different architectures of deep networks in different domains.34

Reviewer #2:35

Thank you very much for the encouraging comments and valuable suggestions.36

Following your recommendation, we will add more discussions in the experimental part to provide takeaways and37

insights about DEAN. We adopted RBM as the energy function at the initial stage. However, the performance of DEAN38

with RBM is not comparable to that with autoencoder, so we discarded the results. We will add clarity on this in the39

final manuscript.40

Reviewer #3:41

Thank you very much for the positive comments and reasonable doubt.42

In recent years, there are two emerging families for generative model learning, generative adversarial networks (GANs)43

and autoencoders (AEs) or variational AEs (VAEs), which are two distinct paradigms and have both received extensive44

studies. Goodness-of-fit (GOF) tests are a fundamental tool in statistical analysis, dating back to the Kolmogorov test in45

1933. Our manuscript and [PDB18] both introduce GOF tests into deep generative modeling, but fall into different46

paradigms: [PDB18] is an AE-based method without adversarial learning while our paper is a GAN-type approach. The47

HTAE (hypothesis testing AE) in [PDB18] minimized the reconstruction error, but no adversarial learning (min-max48

adversarial optimization) was involved. The statistic in our manuscript is a kernel-based nonparametric GOF statistic.49

The Shapiro-Wilk test in [PDB18] is a traditional parametric GOF statistic for testing normality. Our paper is quite50

different from [PDB18]. The proposed DEAN with two generators is a pioneering work in the adversarial learning51

setting. Following your comment, we will cite [PDB18] in the final version.52
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