- We thank all the reviewers for liking our paper and providing positive and insightful feedback. Below we address the
- 2 comments and questions regarding our results and writing style.
- 3 Reviewer 1: Thank you again for your encouraging comments on the theoretical and experimental results. We too
- 4 are happy that a single method could perform really well on a variety of learning tasks. We completely agree that
- 5 approximating PML is an interesting and important problem for further research, and will look into it in the near future.
- 6 Reviewer 2: We really appreciate your thorough and insightful comments. We have incorporated all of them in our
- 7 draft and will submit the new version if the paper gets accepted. Below we present our detailed responses in order.
- 8 Thank you for pointing out that the introduction section put much of its emphasis on the property estimation problem.
- 9 We are modifying and reorganizing the introduction to improve its presentation. We will also motivate the other two
- 10 learning tasks: sorted distribution estimation and property testing.
- 11 L.50 (and abstract): We have changed "distribution estimation" to "sorted distribution estimation";
- Abstract and L.49 and throughout; L.70: We have removed the hyphens in "statistical-learning" and "median-trick";
- -L.104, L.285: We have modified the reference list and cited the Charikar et al. paper as a single paper [23]. In the
- submitted version, we had three different citations because the STOC camera-ready version was not available at that
- time. Since the result was relatively new, we also included the talk to help potential reviewers better understand it.
- 16 L.115 and L.123: We have removed citation [21] and modified $\log |\epsilon|$ to $\log (1/\epsilon)$.
- *** L.130: The constant c used for APML is actually (slightly) worse than that for PML. On the other hand, this makes
- 18 it possible to strengthen the error probability bound. We have updated our draft to clarify this.
- 19 *** Theorem 6: The current proof does not yield the \sqrt{k}/ε^2 complexity of uniformity testing in the constant confidence
- 20 regime. We do have an alternative argument that utilizes the problem structure to achieve the \sqrt{k}/ε^2 sample complexity.
- 21 We will provide a sketch of the alternative argument in the updated version.
- 22 L.165: The emphasis here is that our tester is "the first PML-based uniformity tester" providing both the ℓ_1 and ℓ_2
- 23 testing guarantees. Incorporating your comments, we have modified the statement and pointed out that "nearly all
- uniformity testers in the literature [...] provide the same ℓ_2 testing guarantee".
- 25 L.251: We have added a short motivation for the sorted ℓ_1 distance estimation. There are several motivations, including
- but not limited to (unsorted) distribution estimation [70] and symmetric property estimation.
- 27 L.271: We have removed [3] and [17]. We appreciate the detailed comments regarding the references.
- 28 "Question": A simple definition of a universal plug-in property estimator could be a sentence similar to the one in the
- abstract. For example, "there exist absolute positive constants c_1 , c_2 and c_3 , such that for any 1-Lipschitz property on
- $(\Delta_{\mathcal{X}}, R)$, with probability $\geq 9/10$, the plug-in estimator uses just c_1 times the sample size n required by the minimax
- estimator to achieve c_2 times its error, whenever this error is at least n^{-c_3} ". We are still thinking about better definitions.
- Reviewer 3: Thank you for the encouraging comments. The concise and detailed summary of the paper's contributions
- 33 you provided is valuable for us to improve its presentation and organization. We are also excited about the broad
- optimality of PML and APML as well as your strong recommendation for the paper's acceptance. Below we mainly
- address the "Cons" mentioned in your comments.
- 1. We agree that the property testing result is not as impressive as the paper's other results. Yet we still find it interesting
- because combined with other results, it shows that PML is a generic tool for a variety of inference tasks. In addition,
- the $\exp(-3\sqrt{n})$ error probability bound does not hold for property testing [31], hence the "competitiveness arguments"
- 39 in [5] do not directly apply here. Instead, we utilize a new concept of "typical profiles" to reduce the number of objects
- 40 considered, which in turn requires only weaker concentration. This technique may be of independent interest.
- 41 2. Thank you for the nice suggestion of performing experiments using APML, the near-linear computable variant of
- 42 PML. The code is not publicly available yet, and we will ask the authors of [23] for the code so we can compare APML
- and the MCMC-EM algorithm. We are looking forward to seeing the experimental results.
- 3. The experiments for Shannon entropy estimation basically showed that the MCMC-EM PML computation algorithm
- 45 is as good as state-of-the-art algorithms specifically designed for entropy estimation. One way to improve the estimation
- 46 accuracy is to increase the number of EM iterations, e.g., from 30 to 50. On the other hand, this will make the algorithm
- 47 around two times slower, since the computation time of each MCMC-EM iteration is roughly the same.
- 48 4. Detailed comments: 1) We have modified the notation used in line 78-79 according to your suggestion; 2) We have
- simplified the statements of conditions and made Theorem 1 self-contained; 3) We have added a new paragraph to give
- a high-level description of the APML algorithm. Thank you for helping us enhance the writing of the paper.