
We thank the reviewers for their time, their valuable and encouraging feedback, and their recommendations for1

improvement. We remain confident that our work is of strong interest to the NeurIPS community and easily can2

incorporate the suggested changes in a revision for the conference. Answers to specific comments appear below.3

Related literature. We thank R1 and R2 for pointing at several related papers. We believe that our model and4

inference techniques are substantially different, however we agree that all of the mentioned papers are relevant. We5

present a brief discussion below and we will add an extended discussion (and citations) to our paper.6

R1 suggested that Local Partition Process (LPP) of Dunson (2009) allows for sharing a subset of coordinates, which7

may be beneficial. We note that LPP is applied in a regression-like problem where there is a single global parameter - a8

vector of regression coefficients, and each dataset selects a (sparse) subset of the coordinates of this vector. In our work9

there is a collection of global parameters and each dataset selects an (also sparse) subset of these global parameters10

via the Bernoulli process, i.e. Qj . On a high level, both models perform a sparse subset selection, however there are11

significant differences in modeling goals and inference. We suspect it might be possible to apply our model in the12

problem studied by Dunson and apply LPP in our setting, however it remains to be seen whether inference with LPPs13

can be generalized to the local models with inherent permutation invariance (mixtures, HMMs, etc.) that we consider.14

To clarify, in Dunson (2009), regression coefficients are naturally aligned across datasets as they are ordered according15

to the data coordinates; in our work, mixture components may be ordered arbitrarily for each dataset. What is perhaps16

a more worthy direction for future work is to develop a model capable of both selecting from a collection of global17

parameters and their coordinates.18

R2 mentioned a series of papers studying meta-analysis of Bayesian analyses applicable to random effects, linear19

regression, and other similar models. The key difference in our work is that we consider models with inherent20

permutation invariant structure of the parameter space: we demonstrate examples with mixtures, topic models, HMMs,21

and sparse GPs. Permutation invariance leads to inferential challenges associated with finding correspondences across22

sets of local parameters and learning the size of the global model, which are addressed in our work. On the other hand,23

it is not clear how the approach of Dutta et al. (2016) can be applied to models such as mixtures. The work of Heikkila24

et al. (2017) and Blomstedt et al. (2019) have similar modeling limitations, however they suggest interesting directions25

for future work: how to strengthen privacy preserving properties of SPAHM to guarantee differential privacy as in26

former, and how to generalize SPAHM to aggregate local posteriors instead of parameters as in the latter.27
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Baselines. R3 asked for comparison to stochastic variational inference (SVI). In the28

paper we do compare against (memoized) online variational inference (see line 274)29

for the HDP-HMM models, which is the state-of-the-art for inference in such models30

and outperforms SVI. We also compare against a Gibbs sampler (line 245) for the31

Gaussian topic models. In both cases, SPAHM either outperforms or performs comparably32

while being significantly faster. Here, using SVI for inference, we compare to Chinese33

Restaurant process (CRP) in simulations as requested by R1. We also compare to34

CRP fitted with local centroid estimates, alike meta-modeling suggested by R2. This35

experiment is an extension of the Figure 1 of our paper. CRP performance is similar to36

k-means (which is expected as we have been fitting k-means with true L in our experiments) and is inferior to SPAHM.37

R2, if we understood correctly, suggested we compare to a full Bayesian hierarchical model and to other meta-modeling38

approaches to illustrate why our method is necessary. We believe that such results are contained in the paper. For39

example, in the Gaussian topic models experiment SPAHM is over 1400 times faster than hierarchical model inference40

with a Gibbs sampler (see lines 247-248). For the meta-modeling, we considered k-means clustering of the local41

parameters as a basic baseline: SPAHM outperforms this baseline in the motion capture experiment (see Fig. 4 left and42

lines 291-298) and in simulation studies (see k-means “matching” in Figures 1 and 2). In the figure presented in this43

rebuttal we also considered CRP “matching” as another meta-modeling baseline approach.44

Model and inference clarifications. R1 asked about the data partitions — we assume that local datasets (and45

corresponding parameters) are independently but not identically distributed. For example, our method can aggregate46

topics learned from datasets generated with different numbers of topics and even different topic models.47

R3 asked about learning the cardinality of Cj and parallelizing the algorithm. It is important to clarify that our approach48

performs meta-modeling. This means that first each dataset is processed independently and in parallel to obtain49

local sets of parameters. For a dataset j, there are card(Cj) parameters, where card(Cj) may be a hyperparameter50

or can be learned by applying an appropriate Bayesian nonparametric model locally, as we’ve done in our motion51

capture experiment. Then, these parameters serve as input to our algorithm and are not being updated. Our algorithm52

non-parametrically learns the global set of parameters and its size, allowing for data privacy and significant speedups53

compared to full Bayesian hierarchical learning (e.g., in the topic modeling experiment, our method is 1400 times faster54

than full hierarchical inference - see lines 247-248).55


