
1) Comparison with Catoni’s Bound (R1 & R2 & R3): Catoni’s bound has the form (1 + cc)L̂SQ+ Ccm (KL(Q‖P ) +1

log 1
δ ), while our bound (Eq. (25)) can be written (1+cr)L̂SQ− cr(1−h2)

m

∑m
i=1(EQf(zi))2+

Cr
m (KL(Q‖P )+log 1

δ+1).2

Here cc, cr inflate the empirical risk and Cc, Cr are constants. Let Tm be cr(1−h2)
m

∑m
i=1(EQf(zi))2. Note that cc3

and cr must be fixed before seeing the data. Assuming we equate the inflation of the empirical risk, i.e., cc = cr,4

the proposed bound is tighter than Catoni’s bound provided m > 1
Tm
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)
. If Tm5

converges to a positive number (a reasonable assumption), then our proposed bound will be tighter for sufficiently many6

samples. If we assume cc 6= cr, our bound can still be tighter than Catoni’s bound under more involved conditions.7

2) Talagrand-type concentration inequalities (R1): We thank the reviewer for this valuable comment. As the reviewer8

anticipates, some adaptation of Talagrand’s result seems to be necessary. We can raise this as an open question.9

3) From binary loss to bounded or unbounded losses (R2): Our main results for binary loss can be extended to [0, 1]-10

valued (i.e., bounded) loss, but with a different constant C = 4h2c
9(1+h2c)(1+h2c/9) that has the same interpretation as in11

Eq. (14). Briefly, the proof relies on Jensen’s inequality LD(Q)− L̂S(Q)− c
m

∑m
i=1 EQ[f(zi)− (1 + h)EQf(zi)]2 ≤12

LD(Q)− L̂S(Q)− ch2

m

∑m
i=1(EQf(zi))2. Then, by a symmetrization technique similar to that in Eq. (17), we get13
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where c′ = c+c2

2 , c′′ = c−c2
2 . This inequality enables the use of KL’s Legendre transform, as in Eq. (23). The bound for14

[0, 1]-valued loss can then be derived following similar techniques in the paper. We’re happy to include these details15

or leave them out as the reviewers see fit. For unbounded losses, it might be possible to extend our results under a16

sub-Gaussian assumption, but we prefer not to speculate. In the revised paper, we discuss extensions to general loss17

functions and cite Alquier and Guedj (2018).18

4) Connections between Eq. (9) and Lemma 1 of (Guedj, 2019) (R2): Thanks for pointing out this connection. We now19

cite Guedj (2019) in our revision.20

5) Comparison with Tolstikhin and Seldin, 2013 (R2): Thank you for pointing out this missing reference. Note that the21

empirical variance (as appears in Thm. 4 of Tolstikhin and Seldin, 2013) and our “flatness” are distinct. The former22

is EQ 1
m

∑m
i=1[f(zi)−

1
m

∑m
i=1 f(zi)]

2, while our “flatness” is 1
m

∑m
i=1 EQ[f(zi)− EQf(zi)]2. It is possible for the23

second quantity (“flatness”) to be zero, even when the first quantity is large. We now cite Tolstikhin and Seldin (2013)24

and highlight the relationship.25

6) Connections to Grunwald and Mehta, 2019 (R3): Grunwald and Mehta propose a novel notion of complexity in26

terms of a “luckiness function”, which generalizes the “prior” in PAC-Bayes and unifies the classical Rademacher27

complexity bound for ERM into the same framework. On the other hand, the paper is not directly related to deriving28

PAC-Bayes bounds using Rademacher-process approaches, hence not comparable to our work. However, it is certainly29

of great interest to study if our PAC-Bayes work can be extended to their more general framework in terms of “luckiness30

functions”. We will add the discussions in the revised paper.31

7) Connections to Dziugaite and Roy, 2017 (R2 & R3): We modified the code of Dziugaite and Roy (2017) and32

determined that the posterior they find is not “h-flat” in our sense. After some investigation, we believe the reason33

is that they are optimizing a PAC-Bayes bound and due to the poor prior choice, they underfit, and as a result, the34

posterior they find corresponds to a Gaussian with large variance for many parameters that are essentially “useless”. We35

think investigating this and other empirical questions further is an interesting and open avenue of research, though well36

beyond the scope of this paper.37

8) How is the proposed approach “more appropriate than “classical” approaches”? (R3): We’re not entirely clear on38

the question, but here is our best attempt. We’re happy to add further discussion if the reviewer can expand their39

question in their update. We cannot at present derive our “flatness” bound by a direct PAC-Bayes approach, without40

going through the Rademacher argument. We now raise this as an open problem.41

9) Choosing a Dirac mass as a posterior would enable comparison with ERM (R2): In order for there to exist a (data-42

independent) prior P that, with high probability, dominates a Dirac mass concentrated on a random point η (thus43

yielding a finite KL divergence term), η must lie in a countable set with high probability. In general, ERMs do not44

satisfy this property. In order to study ERM using PAC-Bayes bounds, one usually relates the risk and empirical risk of a45

Gibbs classifier to the ERM. Standard approaches exploit margin. Herbrich and Graepel (2001) is a classical reference.46

10) Minor Issues and Missing Citations (R1 & R2 & R3): We thank the reviewers for their comments and suggestions.47

We have corrected all typos and missing citations in our revisions.48


