
We truly appreciate helpful comments from all three reviewers. Our main modeling and methodological contributions1

are: 1) A novel generative model, (SI-)VGRNN, is proposed to achieve more interpretable latent representations2

for dynamic graphs as shown below. To the best of our knowledge, this is the first method modeling uncertainty of3

node latent representations for dynamic graphs, capturing both topological evolution and dynamic attribute changes4

simultaneously. 2) By imposing semi-implicit variational inference, we have further extended our original VGRNN5

model to increase the expressive power of the inferred posterior. 3) Unlike existing dynamic graph models focusing on6

specific tasks including link prediction and community detection [Kim et al., 2017], (SI-)VGRNN facilitates end-to-end7

learning of universal latent representations for various graph analytic tasks.8

R1 asked how (SI-)VGRNN deals with deletions and additions of nodes. If the9

graph is growing with addition of new nodes, we assume that the prior of latent10

representations for the newly observed nodes is zero mean with unit variance11

Gaussian distribution. If node deletion occurs, we assume that the identity of nodes can be maintained thus removing a12

node is equivalent to removing all the edges connected to it. More specifically, the sizes of A and X can change in time13

while their latent space maintains across time. Note our model is not designed to predict the occurrence of new nodes.14

To show that VGRNN learns more interpretable latent representations (R1, R3, R4), we simulated a dynamic graph with15

three communities in which a node (red) transfers from one community into another in two time steps (1st Fig.). We16

embedded the node into 2-d latent space using VGRNN (2nd Fig.) and DynAERNN (the best performed baseline; 3rd17

Fig.). While the advantages of modeling uncertainty for latent representations and its relation to node labels (classes)18

for static graphs have been discussed in Bojchevski & Gunnemann [2018], we argue that the uncertainty is also directly19

related to structural evolution of nodes in dynamic graphs.20

More specifically, the variance of the latent variables for the21

desired node increases in time (left to right) colored with22

red contour. In time steps 2 and 3 (where the node is mov-23

ing in the graph), the information from previous and cur-24

rent time contradicts each other; hence we expect the repre-25

sentation uncertainty to increase. We also plotted the vari-26

ance of a node whose community doesn’t change in time (colored with green contour). As we expected,27

the variance of this node does not increase over time. We argue that the uncertainty helps to better encode28

non-smooth evolution, in particular abrupt changes, in dynamic graphs. Moreover, at time step 2, the mov-29

ing node have multiple edges with nodes in two communities. Considering the inner-product decoder, which30

is based on the angle between the latent representations, the moving node can be connected to both of the31

communities which is consistent with the graph topology. We note that DynAERNN fails to produce such32

an interpretable latent representation. We can also see that VGRNN can separate the communities in the latent space33

more distinctively than DynAERNN.34

R4 asked what additional information Zt provides in Eq. 4: While Eq.35

2 constructs the “prior” distribution for Zt, as conditioned on the state36

variable ht−1, the posterior of Zt has been fed to ht in recurrence37

step, i.e. Eq. 4. Note that the posterior of Zt has been inferred based38

on the information of At, Xt and ht−1, i.e. Eq. 6. From this point of39

view, the information of Zt is more than ht−1. We have to feed ht−1 in Eq. 4 to maintain the RNN structure.40

R4 also asked about reconstructing node attributes. As (SI-)VGRNN contribution is to have a model for diverse41

dynamic graph analytic tasks, the main goal of our method is node embedding. Hence, we are only interested in42

reconstructing the graph topology instead of the node attributes. This is a common practice in node embedding methods43

that use node attributes for better node embedding. Potential extensions with other decoders can be integrated with44

(SI-)VGRNN to construct the node attributes if needed. Regarding the dimension of variables (R4), as (SI-)VGRNN is45

a node embedding method for dynamic graphs, each node is embedded to a point in the latent space. Hence, the first46

dimension of Xt and Zt are the same and the second dimension of Zt is user specified latent dimension. If we reduce47

the first dimension of Zt, it would be “graph embedding” method rather than a “node embedding” technique, which is48

an interesting extension to our work.49

Regarding the advantages of our work compared to related work (R1): 1) Dynamic network embedding is pursued50

with various techniques such as matrix factorization [Zhu et al.,2016], deep learning [Seo et al., 2016], and random51

walks [Yu et al., 2018], many of which are task specific methods and do not focus on representation learning. 2) Most52

existing methods either capture topological evolution or attribute changes to learn dynamic node embeddings [Yang et53

al., 2017;Sarkar et al., 2007] but only a few model both changes simultaneously [Trivedi et al., 2019]. 3) None of the54

existing methods model the uncertainty of the latent representations. While generative models in form of parametric55

temporal point processes [Trivedi et al., 2017] and deep temporal point processes [Trivedi et al., 2019] have been used56

for modeling dynamic graphs, to the best of our knowledge, (SI-)VGRNN is the first variational based deep generative57

model for representation learning of dynamic graphs. A more comprehensive related work section will be added.58


