- **Reviewer 1: O:** Compare and highlight new challenges of analyzing TDC relative to other GTD algorithms in [30,34].
- A: (a) As mentioned in [14], TDC does not have an explicit saddle point representation as GTD and GTD2, and hence 2
- its analysis cannot follow the convex-concave optimization framework developed in [30,34]. (b) [30,34] assume that 3
- two variables' updates have the same constant stepsize. For TDC, we analyze more general cases: two stepsizes have 4
- different diminishing rates, and two stepsizes are different valued constants. Consequently, in our case, interaction 5
- between two variables requires more sophisticated techniques to analyze, e.g., recursively sharpening error bounds.
- Q: The paper generalizes stagewise stepsize in conventional (one timescale) optimization to two-timescale optimization.
- Discuss new challenges of analyzing algorithms with blockwise diminishing stepsize in this new settings. 8
- A: Comparing to conventional optimization with stagewise stepsize, here we need to handle the bias induced by non-i.i.d.
- samples and characterize non-asymptotic behavior of two timescale variable update. Hence, the update scheme for 10
- stepsize and block length in each block is designed based on two time-scale analysis to yield linear convergence rate 11
- blockwisely and desirable sample complexity. 12
- Q: How the theoretical guarantees can be affected in the non-asymptotic analysis of actor-critic and gradient Q-learning. 13
- A: Since both actor-critic and gradient Q-learning algorithms are two time-scale algorithms, our non-asymptotic analysis 14
- for two time-scale algorithms can be very useful. Moreover, analysis of these two algorithms will further require to deal 15
- with their special structures such as policy update, presence of multiple fixed points, local convergence, etc. 16
- **Reviewer 2: Q:** How is θ^* obtained in the experiments. 17
- A: In our experiment (Garnet problem), since we pick behavior policy π_b and transition probability p(s'|s,a), the
- stationary distribution μ_{π_h} can be computed. Since we also know target policy π and feature matrix Φ , we can compute 19
- the matrix A and the vector b by definition to obtain $\theta^* = -A^{-1}b$. Alternatively, θ^* can also be estimated by running 20 the algorithm with diminishing stepsize for sufficiently long time and taking the average of outputs of several runs. 21
- Q: How would worst-case errors predicted by the bound compare to errors observed empirically in experiments.
- A: Our theory captures how the error bound changes with stepsize diminishing parameters (ν, σ) , which agrees with 23
- how the empirical error changes with stepsize diminishing parameters in our experiments (see Fig. 1 in the paper). 24
- Furthermore, specializing Theorem 1 to i.i.d. scenarios, our convergence rate order-wisely matches the best known 25
- result in [Dalal et al. COLT 2018]. It is a good idea to plot theoretical errors and compare with empirical bounds. The 26
- main challenge here is that precisely estimating some parameters in the error bound (e.g., eq (25)) can be difficult 27
- (although they are known to be constants in convergence analysis). For example, mixing time parameters τ_{α} and τ_{β} in 28
- (25) depend on geometric ergodicity of Markov chain, but constants m and ρ (see Assumption 3) are usually difficult to 29
- estimate in practice. We are currently further exploring such an issue. 30
- Q: Besides implications for the choice of step-size, do these bounds provide insight on what properties of the problem, 31
- the behavior policy, and the representation affect the rate of convergence? 32
- A: Theorem 1 (more precisely eq (25) in supple.) captures how other properties (besides stepsize) affect convergence 33 rate. For example, convergence rate depends on λ_{θ} , which is lower-bounded by the largest eigenvalue of matrix 34
- $2A^{\top}C^{-1}A$, and such a matrix is determined by behavior policy π_b , target policy π , transition probability p(s'|s,a) and 35
- feature matrix Φ . Convergence rate also depends on the mixing time τ_{α} due to geometric ergodicity of the Markov 36
- chain, which is determined by π_b and p(s'|s,a). Other constant terms in (25) such as $L_{f_1,\theta}$, K_{f_1} and K_{g_1} capture the 37
- dependence on π_b , π , Φ and the discount factor γ .
- Q: Explain what "more flexible" mean when saying gradient TD are "more flexible than on-policy learning in practice." 39
- A: We meant gradient TD algorithms are flexible because they converge even with off-policy data and hence can exploit 40 abundant samples (obtained under behavior policies) for learning when the on-policy samples are limited. 41
- Reviewer 3: Q: How to set blocksize properly without prior knowledge and how 42
- robust the algorithm is with respect to blocksize hyperparameter. 43
- A: In practice, blocksize T_s and stepsize α_s are set by parameter tuning, but
- we do not directly tune them for all blocks because there are too many tuning 45 parameters this way. Instead, Theorem 3 indicates that T_s and α_s for all blocks 46
- are fully determined by only four parameters ϵ_0 , $|\lambda_x|$, C_7 , and η , and among 47
- them $|\lambda_x|$ and η can be estimated by matrices A and C from samples. Hence 48
- Error($\|\boldsymbol{\theta}_{t}^{-\boldsymbol{\theta}^{*}}\|^{2}$) 100

of iterations

-10%

300

250

- we mainly tune only ϵ_0 and C_7 . Our experiments demonstrate that this approach yields desirable performance. For 49 robustness, we run experiments (see the figure on the right) and find that perturbing blocksize even by $\pm 30\%$ for all 50
- blocks changes the convergence rate only very slightly, demonstrating that the performance of algorithm is very robust
- to blocksize.