
The reviewers have raised five issues:1

Testing other architectures2

The most interesting architectures, in our view, are locally connected but non-convolutional networks, like those in the3

brain. We are working on tests of this type, but there are technical hurdles, as large non-convolutional networks are still4

extremely slow on computers. We will also investigate training AlexNet and VGG architectures using our approaches.5

6

Figures of experiments where Sign-Symmetry achieved its best results7

We will show these plots in a new Appendix.8

9

Alignment10

In Figure 4, KP kept matrix and δ angles smaller than WM did, but that may not be the case in all learning tasks. With11

KP, B converges to WT at a rate that depends on λ, the weight-decay factor in equation (17). A big λ speeds up12

alignment, but may hamper learning. So the question is whether we can find a good balance between weight decay λ13

and learning rate ηW , but at present we have no mathematical proof that a good balance will always be possible. In14

this respect, WM may be more versatile than KP, because if mirroring ever fails to yield small enough angles, we can15

simply do more mirroring, e.g. in sleep.16

17

Computational costs18

Suppose layers l and l + 1 are fully connected, with nl and nl+1 forward units (and the same numbers of feedback19

units if they are separate from the forward ones), and let n = min(nl, nl+1). Then for each training example, KP does20

n+ 4nlnl+1 flops to adjust Bl+1 using equation (17). WM does the same number to adjust Bl+1 using equation (7)21

and weight decay. But WM also has to generate a random vector yl and then perform about 2nlnl+1 flops to compute22

yl+1 from yl using equation (1), whereas KP uses the same yl and yl+1 that train the forward matrices. In short, WM23

needs twice as many forward passes as KP does to collect as many training examples for its B matrices (whether the24

net is fully-connected or not).25

In our ResNet-18 and ResNet-50 tests, the computational costs of WM’s additional forward passes were 1.8 GFLOPs26

and 3.8 GFLOPs respectively, not counting the costs of random number generation.27

28

Could the brain have one-to-one wiring between forward and feedback neurons?29

Getting that one-to-one correspondence is of course trivial if the same neurons make up the forward and feedback paths,30

though then we face the new problem of signal segregation — explaining how signals y and δ can flow through the31

same cells without interfering. Some possibilities are that neurons segregate y and δ by conveying them with different32

intracellular messengers or computing them in different parts of the cell [22,29], or by multiplexing [23], or by taking33

turns carrying one or the other signal.34

If the forward and feedback paths are distinct sets of neurons, then the one-to-one connections might arise during35

development. We know that very precise and consistent neuronal wiring is found in simple organisms such as C. elegans36

and in the compound eyes of insects, while in primate cerebellum there is a mechanism (not fully understood) that wires37

up each Purkinje cell with exactly one appropriate climbing fiber.38

And finally, something less than strict one-to-one wiring may suffice for effective learning. As in the case of weight39

transposes, an approximate one-to-one wiring might be achieved by simple local learning rules.40

We agree with the reviewer that this question is important, and we now address each of these options for circuitry41

arrangement in an extended paragraph in the updated manuscript.42
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