
We thank the reviewers for appreciating our work, and for their constructive suggestions to improve its quality.1

Response to Review #1: Intuition on linear rate: Varag achieves linear convergence rate when m ≥ D0/ε, and2

sublinear rate when m < D0/ε, which relies on our selection of the inner loop size Ts. In our convergence analysis, we3

notice that the convergence rate is roughly in the order of 1/Ts (see Lemma 7), hence, if Ts increases exponentially,4

we can achieve linear convergence rate. Intuitively, it is reasonable to always increase Ts in order to avoid the full5

gradient computation when m is very large, i.e., m ≥ D0/ε. It then stops increasing Ts when Ts = m, since the cost6

of full gradient computation is comparable to that required by m inner loops. We will add such discussions in the7

text. Sampling method in experiments: We use uniform sampling strategy to select fi in all experiments. Indeed,8

theoretically the sampling distribution can be non-uniform, i.e., qi = Li/
∑m

i=1 Li, which results in the optimal constant9

L = 1
m

∑m
i=1 Li appearing in the convergence results. A uniform sampling, e.g., qi = maxLi, will lead to a constant10

factor slightly larger than L. Note that Li can be estimated by performing maximum singular value decomposition of11

the Hessian. This is computationally efficient because only a rough estimation suffices. We appreciate the reviewers’12

comments and will add corresponding experiments and discussions in the experiment section.13

Response to Review #2: Introduction section: We will add more examples and discussions on cases of strong convexity14

of f and stochastic finite-sum problems. D0 in Table 2: We will fix the footnote for D0. Sampling distribution: See15

response to review #1 about a similar question. Relation with other accelerated methods: We pointed out in the16

footnote 1 that Catalyst requires restarting to achieve the optimal convergence rates, Katyusha needs to add perturbations17

to achieve optimal rates for smooth problems. We will expand these discussions and put them into main text. Note that18

we also compare Varag with Katyusha in details after we present Varag in Alg. 1.19

Response to Review #3: 1. Thanks for pointing out this typo. x should be x∗ in Equation (2.6).20

2. We say that O(m log 1/ε) is linear but not sublinear w.r.t. ε. We cannot replace m by D0/ε because it leads to a21

too optimistic bound. Moreover, m is a constant independent of ε, and roughly every m gradient computations will22

increase 1 digit of accuracy, so we call it a linear rate. Indeed we admit that an O((D0/ε) log 1/ε) bound would be23

better than O(m log 1/ε) if m > D0/ε. We will add such discussions in respective places in the main text.24

3. Thanks for this suggestion. Indeed one can assume each individual fi is associated with a minibatch instead of a25

single piece of data. For the more general minibatch version, one can replace Gt = (∇fit(xt)−∇fit(x̃))/(qitm) + g̃26

(Line 7 of Algorithm 1) by Gt =
1
b

∑
it∈Sb

(∇fit(xt)−∇fit(x̃))/(qitm) + g̃ with |Sb| = b and adjust the appropriate27

parameters to obtain the minibatch Varag. We expect that the minibatch Varag will obtain the parallel linear speedup of28

factor b if minibatch size b ≤
√
m. We will incorporate such analysis into the revision of the paper.29

4. We will update it as “Varag is the first accelerated randomized incremental gradient method that benefits from the30

strong convexity of the data-fidelity term to achieve the optimal linear convergence” to be more accurate.31

5. Our Varag method is not adaptive and we will mention this explicitly in the later version. Note that the adaptivity of32

hyperparameters, i.e., smooth parameter L and strongly convex parameter µ (Varag only needs these two hyperparame-33

ters), is not the focus of our current Varag method. Varag uses a unified step-size policy to unify the convex problems34

with or without strong convexity, and directly achieve the best convergence rate for non-strongly convex problems. The35

adaptivity of hyperparameters is a good property for an algorithm, and we leave this as an interesting future extension36

of our work. We appreciate the reviewer’s question and will add clarification into the revision.37

6. Thanks for pointing out the recently Loopless SVRG paper [KHR2019] which removes the outer loop of SVRG38

by computing the full gradient with a small probability in each iteration. In the well conditioned/ big data case, our39

Varag switches to non-accelerated regime and achieves a linear convergence rate. We would like to point out that in40

non-accelerated regime, Varag, similar to Loopless SVRG, only needs to know L and does not require the knowledge41

of µ to set its parameters. Thus we believe that Varag will still work well in this case. We will some discussions about42

Varag’s properties in this regime, as well as Loopless SVRG.43

7. After briefly reading Loopless SVRG [KHR2019], we feel that Varag can also be possibly generalized into a loopless44

version similar to Loopless SVRG. We will discuss possible extensions of this method in the revised version.45

8. We provide the theoretic suggestion of bs and Bs by minimizing the stochastic gradient complexity:
∑

smBs +46 ∑
s Tsbs. One can use other values for bs and Bs and Varag can still converge to a stochastic ε-solution, but it may lead47

to a worse stochastic gradient complexity than our theoretic guarantee. We will add such discussions into the text.48

9. Thanks for the constructive suggestions. We will try to add more experiments. Regarding the parameters, we only49

need two hyperparameters (i.e., the smooth parameter L and strongly convex parameter µ) to set all parameters in our50

experiment. We first use singular value decomposition (SVD) for the Hessian to compute L and µ at the beginning for51

all algorithms (this step is not included in the performance comparison). Then we use them to run all algorithms and52

compare their performance w.r.t. gradient computation. We will specify more details of the experiments and parameters53

setting in the revised version.54

10. All typos will be addressed in the revised paper.55


