
First off, thanks to all our reviewers for taking the time to look over our submission and provide thoughtful feedback.1

Individual responses are below.2

Response to Reviewer 1:3

Oracle Knowledge of k: In our superset method, you are correct that oracle knowledge of k is assumed both in4

determining the Bernoulli probability of the matrix entries and in determining the number of rows of the matrix.5

However, in the absence of exact knowledge of k, we can instead treat these quantities as hyperparameters to be6

optimized; for the Bernoulli probability, we give some experimental evidence in Appendix B that this parameter is not7

overly sensitive to tuning, and likely any reasonable estimate of k could be used in place of the exact value. Similar8

assumptions have been made in previous work such as the BIHT algorithm, but finding new algorithms that work9

independently of the value of k is an interesting problem.10

Noise: We can extend our methods to handle the case of noisy measurements by using "error-correcting list disjunct11

matrices" (see "Efficiently decodable error-correcting list disjunct matrices and applications" Ngo, Porat and Rudra12

2011) in place of standard list disjunct matrices in order to recover the superset of the support, at the cost of slightly13

more measurements. Since the measurement outcomes are only bits, the bit-flip error is the best noise model in this14

setting, which can be taken care of by the error-correcting list disjunct matrices. Running some further experiments15

with these matrices and measurement noise would be a good addition.16

Comparison with Other Methods: The main reason we have not attempted to give experimental comparison with17

these methods is that they are designed specifically for the universal setting. In the experimental setting we consider,18

the measurement matrices have far fewer measurements than what is required for them to be universal; our superset19

method gives a fairly smooth degradation of performance even when there is a small measurement budget, but this is20

not the case for other methods. The method of Acharya et al., for instance, with less measurements than what is needed21

for universality, will have false negatives in the support recovery phase, which results in large error in the second stage.22

We could provide this comparison experimentally if it would be beneficial, though.23

Response to Reviewer 2:24

Robustness: While badly misidentifying the superset would indeed lead to poor performance in the second stage, this25

is only a serious issue if we have false negatives (i.e. we miss coordinates that were in fact in the support). The way our26

decoding works, this will never happen, there will be only false positives. So in the worst case, the superset just ends up27

being slightly larger, and somewhat more work has to be done in the second stage. For robustness to measurement28

noise, see the comments to Reviewer 1 (“Noise”). Handling approximately sparse signals is also an interesting direction29

– we believe this could be dealt with by slightly modifying the quantization scheme, so that measurements of very30

small magnitude are treated as having zero magnitude. You are correct that as is, our method will not be robust to31

approximately sparse signals.32

Knowledge of k: Please see comments to Reviewer 1 (“Oracle Knowledge of k”). A reasonable estimate of k will33

suffice in place of exact knowledge.34

Experiments: The idea of using the superset matrix directly with BIHT is a very interesting one, that we will consider35

in the future version (we believe getting a theoretical result may be challenging). Perhaps using some other matrices36

such as an all 0/1 matrix with Bernoulli entries would be worth checking as well.37

Response to Reviewer 3:38

Wording of “optimal number of measurements”: You are correct, in both the binary and nonnegative cases it is open39

whether or not the k3/2 term is necessary, so it is unclear whether the number of measurements we obtain is optimal;40

thanks for the catch. The lower bound of k log(n/k) + (k/ε) from Acharya et al. does not obviously apply in either of41

these restricted settings, but it is included in Table 1 for the case of real vectors.42

Proof of Theorem 10: The last step follows from substituting q = O(k/α) as you mention, and also that 1/(1 −43

Hq((k − α)/k)) = Θ((α/k) log(α/k)), which can be seen by expanding out the terms (using the definition Hq(p) =44

−p logq(p) − (1 − p) logq(1 − p) + p logq(q − 1)). We will include this definition and the details of this step for the45

future.46

Novelty: We believe the primary novelty in the submission is in the use of superset recovery in the 1bCS setting, and47

also in developing the relationships between some of the tools and methods used in group testing and those used in48

1bCS.49

Thanks also for the further references.50


