
We thank all the reviewers for the time reading our paper! We will fix all the minor issues, and below we only address1

the main concerns.2

• R2: “The function class it learns seems to be identical to the function classes learned by Allen-Zhu et al. in prior3

works, which are known to be learnable in polynomial-time via other methods.”4

We’d like to emphasize that our main focus of the paper is "what function class can recurrent network (RNN) learn".5

Prior to our work, the only function class known to be learnable are linear functions; but even for this linear class, it6

could require 2L samples if known generalization bounds are used, since ∣∣W ∣∣2 is larger than 1 (roughly 2 in our7

setting). We believe it is (much) more interesting if someone could identify a non-linear class and prove that it is8

learnable by RNN. This is already a step forward.9

• R2: What happens if the inputs are not norm 1? What complexity bounds are obtained in this case? Also, how does10

the complexity scale with the Lipschitzness/boundedness of the loss function (currently assumed to be 1)?11

If the inputs are not norm 1 but with norm < C, then we can wlog. pad the input (adding
√
1 −C2 to last12

coordinate) to make it norm exactly C. Then, the concept class φ(⟨w,x⟩) becomes φ(C⟨w,x/C⟩) and one can13

define φ′(z) ∶= φ(Cz). Now, the complexity changes from C(φ,R) to C(φ′,R): how much it affects the complexity14

depends on what φ is. If φ is degree k then this is at most Ck. If φ(z) = sin(z) and φ′(z) = sin(Cz), this changes15

the complexity by a factor (1/ε)C . This is polynomial only if C is a constant, but should be somewhat forgiven:16

learning sin(10⟨w,x⟩) is indeed somewhat “exponentially harder” than learning sin(⟨w,x⟩).17

As for the Lipschitzness/boundedness of the loss function, our final result (time/sample complexities) only scale18

polynomially with them. We will add a short section explaining this.19

• R2: Are there hardness results? is LO(log 1/ε) the best possible?20

There’s no hardness result, but we conjecture LO(log 1/ε) is the best possible for vanilla RNN. If more structures21

such as memory units are added, it may be possible to get poly(L). That’s an interesting future direction.22

• R2: My main concern is how much does this paper overlap with several other works analyzing SGD on overparame-23

terized networks, most notably Allen-Zhu et al.24

Allen-Zhu et al. [1] consider two (or three) layer feedforward NN, which uses one (or two) hidden weight matrix to25

learn one target function. Here in RNN, there’s only one weight matrix shared across the entire time horizon to26

learn L target functions at different input positions.27

Using “one weight” to learn “one target function” is traditional,28

but using “one weight” to efficiently learn “L different target functions” is substantially more difficult,29

especially when the layer information L is not given as the input to the network. For example, our theorem implies30

that an RNN can distinguish the sequences “AAAB” from “AABA”, since the order of A and B are different.31

This requires the RNN to keep track, using one weight matrix, of the position information of the symbols in the32

sequence. This is indeed is more difficult.33

Allen-Zhu et al. [2,3] are about trainability only, and gives no generalization guarantee.34

• R2: the main technical difference from previous work seems to be Lemma 5.2b.35

No, this is not true. Due to space, we only present one of our main contributions in 8 pages. As we emphasized36

on line 269-273 of page 8. Our technical lemmas are in Appendices B/C/D/E/F (regarding RNN at initialization37

and stability). Although B+F have reused some prior work, Appendices C+D+E are completely new what-so-ever.38

Furthermore, C+D+E give technical lemmas that are (certainly) of independent interests.39

• R4 also questions our overlap with Allen-Zhu et al [2]. We refer R4 to our answers above.40

• R4: Can you give examples about the proposed concept class? Intuitions about Cs and Ce?41

Counting is an example. One can define φ such that φ(a) = 1 and φ(b) = −1 (this can be achieved by a quadratic42

function with constant complexity), hence the final prediction (target function) is ∑i φ(xi). If the sequence is43

x = anbm such that n = m, then ∑i φ(xi) = 0, otherwise it is non-zero. So this concept class is learnable by our44

theorem. We will add more examples in the next version. We will also give more intuitions about Cs and Ce.45

• R6: “Robust Large Margin Deep Neural Networks” gives generalization independent of number of neurons46

First, “Robust...” seems to be about feedforward NN and not RNN. Second, as we have articulated in lines 35-55,47

there are indeed RNN generalization works [31,9] that do not depend on number of neurons, but they have to depend48

exponentially on input length.49

• R6: what will happen if other parameters are learned? Our same result will hold (almost no proof changes) if50

A,B,W are all trained together. We will add a paragraph to explain it.51


	To Editor

