
R1: "I am not entirely convinced that an amortized explanation model is a reasonable thing. To investigate outliers1

(...) I presume computation of feature importance on the ground truth system would be more appropriate."2

R2: "I would appreciate some clarification about what is gained by learning Â and not just reporting Ω directly."3

We thank R1, R2 and R3 for their insightful feedback. In settings where we have access to samples with associated4

ground truth labels, we could indeed directly use Ω, as defined by Eq. (6), to explain the a predictive model without5

training a separate explanation model. As correctly pointed out by R1, this would be preferable, for example for6

debugging at model development time, because Ω can be computed without any uncertainty, and computational7

performance is not a major concern at that stage. However, Ω can only be computed given ground truth labels. For8

many use cases of explanation methods, ground truth labels are not available, and an explanation model that generalises9

beyond the training data is therefore necessary. Imagine, for example, a predictive model that indicates whether or not10

an individual is at high risk for heart failure based on her individual attributes xi. Suppose now that this system indicates11

an increased risk of heart failure for a specific person. For the physician that receives this prediction, it would be12

paramount to know whether or not this prediction is caused by the patient’s blood pressure reading or by their genomic13

information, as this would dramatically change which further clinical steps should be taken. In this setting, every model14

decision is explained, no ground truth labels are available, and explanations and their certainty are consequential. This15

setting is not unusual, since we would not need to train a predictive model if we readily had access to accurate labels.16

R1: "(The objective) does not attribute importance to features that change how the model goes wrong (...)"17

The perturbed feature itself would receive the same importance, but, since all attributions âi are conditional on all input18

features xi, the overall distribution Â of importance scores would change along with the model’s reasoning. In which19

case the user would be informed that the perturbation dramatically changed how the model arrived at its decision. This20

very approach was used in [19] to show that the explanations used by models are not robust to small perturbations.21

R1: "Why is the rank-based method necessary?"22

We chose the rank-based method to show that the uncertainty estimates reflect accuracy according to the log-odds23

metric that is widely accepted by the research community as a benchmark for feature importance estimation (e.g. [1,24

6]). We believe this is a higher standard, and therefore stronger evidence, since the rank-based metric shows that the25

uncertainty estimates are accurate not just by our metric, but by the community’s standard.26

R2: "Additionally, can the authors clarify what is being averaged in the definition of the causal objective?"27

The causal objective is averaged over all N samples in the dataset. Every data point has an Ω. We originally omitted the28

data point indices for brevity, but we will make the dependence of Ω and Â on the sample explicit in the next revision.29

R2: "If the goal is to determine what might happen to our predictions if we change a particular feature slightly30

keeping all others fixed, I don’t see any role for the explanation model – one can simply compute the new prediction.31

Our goal is not to estimate what would happen if a particular feature’s value changed, but to provide a causal explanation32

for the prediction made by the model, i.e. which input features xi causally influenced the prediction and to what degree.33

R2: "Some additional clarity on why the authors are using a KL discrepancy is merited. Why not use, say, the34

euclidean distance between the vector Omega and the importance weights derived from the explanation model?35

The KL divergence has connections to Bayesian surprise and human attention (see Itti and Baldi, NIPS 2006), and is36

therefore a particularly suitable candidate for optimising the distribution Â of importance attributions.37

R3: "Masking one by one; this is essentially equivalent to assuming that feature contributions are additive."38

We do not define a feature’s importance as its additive contribution to the model output, but as it’s marginal reduction39

in prediction error. This subtle change in definition allows us to efficiently compute feature importance one by one.40

Non-linear interactions between model inputs and model outputs are possible within this definition, since the additivity41

constraint pertains to the marginal reduction in prediction error only (which holds in the general setting).42

R3: "Replacing a masked value by a point-wise estimation can be very bad, especially when the classifiers output43

changes based on the masked feature. Why would the average value (or, even worse, zero) be meaningful?"44

R3 is absolutely correct. There is a range of imputation strategies that could be employed to mask the individual features45

xi, and our work focused on the most straight-forward strategies. We will clarify this point in the next revision.46

R3: "It would also be interesting to compare the proposed method with causal inference technique for SEMs."47

Recent work [29] has explored the use of SEMs for model attribution in deep learning. Compared to CXPlain, the main48

disadvantages of their approach were that (i) their method was limited to specific neural network architectures whereas49

CXPlain can explain any machine-learning model, and (ii) attribution time was considerably slower than CXPlain.50

R3: "It seems to me that the chosen performance measure may correlate much more with the Granger-causal loss51

than with the objectives optimized by the other explainers."52

Related works, such as LIME, SHAP and gradient-based methods, compute attributions directly based on the change in53

the explained model’s output as also measured by the log-odds metric. In contrast, the causal loss uses the marginal54

reduction in prediction error and, therefore, only indirectly models the change in model output.55


