
We thank the reviewers for their interest, and hope this document clarifies our unique contributions.1

In the final version, we will include additional exposition addressing each of the following points.2

Reviewer #2 questions whether it is appropriate to describe our method as a new mechanism, since3

it can be viewed as a particular case of the exponential mechanism. In fact many widely used DP4

mechanisms can be expressed as an instance of the exponential mechanism, such as the Laplace5

mechanism, geometric mechanism, staircase mechanism, K-norm mechanism, posterior sampling6

mechanism, etc. As we show, the KNG approach is applicable in a wide variety of situations, and7

offers improved utility over a classic implementation of the exponential mechanism. For these reasons,8

we think it is justified to refer to KNG as its own mechanism.9

Reviewer #3 asks for intuition behind the use of the gradient in KNG. The proof of the CLT for the10

exponential mechanism in Awan et al. 2019 (ICML), as well as the proof of Theorem 3.2, both rely11

on a Taylor expansion of the objective function. In both cases, it is assumed that the hessian converges12

at a O(n) rate to a positive definite matrix. However, using the original objective function requires13

two derivatives before the Hessian appears in the Taylor expansion, whereas the use of the gradient14

only requires one derivative. The consequence of this is that the traditional exponential mechanism15

results in a quadratic numerator, whereas KNG has a (normed) linear numerator. Asymptotically, this16

gives O(1/
√
n) Gaussian noise for the exponential mechanism and O(1/n)K-norm noise for KNG.17

Geometrically, it seems that the use of an objective function which behaves linearly (in absolute18

valule) near the optimum, rather than quadratic, results in better asymptotic utility. By using the19

normed-gradient, we construct an objective function with this property.20

Reviewer #4 asks for clarification on how the performance of KNG differs from the exponential21

mechanism. While it may not have been clear in the exposition of our submission, in fact the22

assumptions in THM 3.2 are nearly identical to the assumptions required in the CLT of Awan et al.23

2019 (ICML). So, for any problem in which these assumptions are satisfied, KNG always results in24

O(1/n) noise, whereas exponential mechanism results in O(1/
√
n) noise.25

Reviewer #4 also asks for interesting problems where KNG outperforms the exponential mechanism.26

Among the examples in the manuscript, mean estimation and linear regression both satisfy all of the27

assumptions to justify that KNG results in O(1/n) noise, whereas exponential mechanism results in28

O(1/
√
n) noise. While the problems of median estimation and quantile regression do not satisfy the29

assumptions of THM 3.2 (though they are still private), we demonstrated empirically via simulations30

that KNG still results in O(1/n) whereas exponential mechanism results in O(1/
√
n) noise.31

To emphasize the improvement that KNG offers over the exponential mechanism, we point out32

that adding O(1/n) versus O(1/
√
n) noise has a substantial impact on the sample complexity.33

Asymptotically, KNG requires exactly the same sample size as the non-private estimator, whereas34

exponential mechanism requires a constant >1 multiple of the non-private sample size.35

We also note that THM 3.2, as well as the examples of median estimation and quantile regression,36

indicate that KNG outperforms the exponential mechanism for a wide variety of interesting problems.37

Many log-likelihoods fit this framework, as well as many other empirical risk functions.38

Reviewer #4 also asks about sampling algorithms for the KNG mechanisms. KNG is similar to the39

exponential mechanism in that sampling these distributions is generally non-trivial. We show that for40

mean and quantile estimation, KNG results in distributions that are efficiently sampled. However, for41

linear and quantile regression, we used a one-at-a-time MCMC procedure (also used for exponential42

mechanism). Just like sampling from an posterior distribution, developing a convenient sampling43

scheme is case-by-case, but often a simple MCMC procedure works well in practice.44

Finally, Reviewer #4 questions whether the results in this manuscript are significant enough for45

publication in NeurIPS. While we acknowledge that the proof of THM 3.2 is not technically com-46

plex, we argue that KNG offers both an important theoretical and practical contribution to the DP47

literature. While it has been shown before that asymptotically efficient mechanisms exist [Smith48

2011], constructing practical and efficient mechanisms for a particular problem is non-trivial. KNG49

offers a principled approach to developing efficient mechanisms. For mean and quantile estimation,50

KNG offers a method of constructing both the Laplace and PrivateQuantile mechanisms. However,51

besides unifying these prior mechanisms, KNG can also be used to build mechanisms for problems52

not previously solved. In fact, using KNG we develop the first DP mechanism for quantile regression53

that we are aware of, and demonstrate empirically that the mechanism is asymptotically efficient.54
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