
We thank the reviewers for their detailed feedback, which will improve the presentation of our paper.1

First we would like to address a high level point that was raised by the reviewers regarding Riccati perturbations. While2

the proof of Proposition 1 follows the argument of Konstantinov et al., Proposition 2 relies on a new elementary proof3

technique that is of independent interest and offers a tighter guarantee for certain classes of problems, as discussed in4

Lines 268-275.5

Reviewer 4.6

• Regarding the rich literature on certainty equivalence for tabular MDPs, we did not discuss tabular MDPs7

because our focus was on LQR. Nevertheless, we agree with the reviewer that the tabular MDP literature8

is relevant and should be included; we will introduce a few paragraphs on related works (such as Azar et9

al. 2013) in our revision. We would appreciate suggestions of the most relevant works studying certainty10

equivalence for tabular MDPs.11

• It is definitely possible to verify empirically that certainty equivalence outperforms robust control methods12

when the model estimation error is small, while being more sensitive to the size of the error. Dean et al. [2017]13

observed exactly this in Figure 2; we offer a theoretical justification for their observations.14

Reviewer 5.15

• At this stage, our results do not offer bounds that can be used numerically in practice. Indeed, as the reviewer16

suggests, they would be too conservative. However, our results offer insights about the performance of17

certainty equivalence for LQR and LQG. For example, it explains why Dean et al. [2017] observed empirically18

(c.f. Figure 2 of their paper) that certainty equivalence performs poorly in the high error regime, but outperforms19

their robust methods in the low error regime.20

• Dean et al. [2017] do not analyze certainty equivalence, a popular method used in practice. Moreover, Dean21

et al. [2017] study only fully observed systems, i.e. they studied LQR, but not LQG. We showed that certainty22

equivalence achieves a fast statistical rate for both LQR and LQG. We would like to emphasize that the partially23

observed case is significantly more challenging than the fully observed case.24

• Theorem 2 follows from plugging in the inequality from Proposition 2 into the bound of Theorem 1. We will25

make this more clear in our revision.26

• We will make sure to define our notation before it is used in the revision; dare(A,B,Q,R) is the unique27

positive semidefinite solution to the discrete algebraic Riccati equation associated with the parameters A, B,28

Q, and R.29

• The parameters (`, ν) quantify how controllable a system is. They are system dependent quantities. For30

example, if the system is controllable in the classical sense, one can choose ` to be equal to the state dimension31

and ν to be the minimal singular value of the controllability matrix. This is not the only choice, however, and32

this additional degree of freedom allows us to offer sharper bounds for certain systems (c.f. Lines 268-275).33

Reviewer 6.34

• Lower bounds would indeed be very desirable, but unfortunately so far we have not been able to derive lower35

bounds. We leave this for future work.36

• Cohen et al. [2019] focus on the online and fully observed setting and offer an elegant method based on37

semidefinite programming which achieves
√
T regret, where T is the horizon. However, their method requires38

the initialization of the system parameters to be in an error ball of radius O(1/ 4
√
T ), while our method does39

not have this restriction. Our method also offers computational advantages over Cohen et al. [2019], since we40

can take advantage of specialized DARE solvers instead of relying on general SDP solvers. We will make this41

comparison to the work of Cohen et al. [2019] explicit.42

• It would indeed be valuable to derive bounds which rely only on observed data and not on unknown problem43

dependent quantities. At this time we are not aware of a way to achieve this.44
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