
We thank the reviewers and will do our best to improve the presentation.
To Reviewers #2 & #3 on discount knowledge. Yes, in our setup, the
buyer’s γB is public knowledge; we will clarify this in the text. Such
scenario can arise in one of our model interpretations (Lines114-119 &
Appendix F), where an RTB platform (seller S) has more data than an
advertiser (buyer B) and may know which data are not available to B.
In this interpretation, γB, γS are B’s and S’s estimates of a true discount
factor γ, which is a random variable unknown to both B, S. Consider a
toy example: γ= ξ1+ξ2, S observes ξ1 and ξ2, while B observes only ξ1. 0.20 0.25 0.30 0.35 0.40 0.45 0.50
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Say, B’s estimate for γ is γB= ξ1+E[ξ2] (we took the simplest estimate for illustration), then the seller S can evaluate γB.2

What if the seller doesn’t know buyer’s γB exactly. In fact, our results can be useful in such a scenario as well.3

Case (1): if the seller knows only a lower bound γ̂B for γB s.t. γS < γ̂B, then she can apply “Big deal", which prices are4

calculated using γ̂B: Abd(e) =
∑

t γ̂
Bp∗D; Abd(1 ◦ n) = 0 ∀n; Abd(0 ◦ n) = T p∗D ∀n. Buyer (whose discount γB ≥ γ̂B)5

with valuation v > p∗D still accepts the first proposed price, hence, the seller gets at least
∑

t γ̂
Bp∗D (1 − F (p∗D )). This is6

less than the optimal revenue (when γB is known exactly), but strictly larger than the one of static pricing. Similarly,7

modifications of “Big deal" can be applied when seller knows only distribution of γB, γB ≥ γS.8

Case (2): Seller uses functional L to find an optimal algorithm, assumes buyer’s discount is γ′B = γB + ε, but faces9

a buyer with true discount γB. We evaluate the loss in revenue by the following numerical experimentation: T = 5,10

V ∼ U[0; 1] (uniform on [0; 1]) and γS = 0.5 (different sets of parameters give qualitatively the same results). In figure11

above, the expected strategic revenue (ESR) of this seller is divided by the ESR of a well-informed seller (i.e. s.t. ε = 0).12

We see: (a) if ε is small enough (for ε = 0.02, or ≥ 4% of γB), then S still able to extract over 99% of the optimal ESR;13

(b) even if ε is very large (for ε = 0.1, or ≥ 20% of γB) S still able to extract over 97% of the optimal ESR for most14

cases (γB ≤ 0.4); and (c) if S is able to just separate γB of γS with a decent margin, then she is able to gain extra revenue.15

To Reviewer #2.16

On time complexity. Application of pricing algorithms has no time complexity issues, since a seller just needs to track17

the current node in a tree to post a price in a round, however she needs to have enough memory (for 2T−1 float variables).18

As of numerical methods to optimize our functional L(·), it’s took few seconds to converge in all our experiments.19

To Reviewer #3.20

On point 4. No. Geometric discounts are considered for sake of exposition, but our results hold for non-geometric21

discounts as well. They are studied in Appendices A.1 & A.2, as indicated in Remarks 1 & 2 (see Lines 189, 283-284).22

On point 6. No. It is written correctly: S(·) is piecewise linear, because, in a piece (an interval (vi, vi+1)) S(·) equals23

to Sai (·) for some strategy ai which is a linear function of v: Sai (v) = (
∑

t γ
B
t ai

t )v − (
∑

t γ
B
t ai

tpt ) (see Lines 211 & 81).24

On point 7. We have no hardness result for the optimization problem in Eq. (5), but, generally, it does not have a closed25

form solution (as we argue in Lines271-273). Numerical methods help in this case, but they are usually very sensitive to26

the dimensionality of the problem. This is why we address the problem of dimensionality reduction and show that our27

functional L(·) is also useful to find optimal pricing algorithms in low-dimensional spaces. Note that low-dim spaces28

can be obtained by different constraints (see Lines323-335), not only by τ-step algorithms (as in Lines290-322).29

On point 2&5. Yes, you are right here. We will fix and make clear the text in these lines.30

To Reviewer #4. On Lines 125,158&211. Yes, you are right here, we will improve text in these places.31

On Lines 213-227 (construction of Prop.1’s proof). The construction in these lines (and, thus, the proof of Prop.1)32

works for the case γS ≥ γB as indicated in the statement of Prop.1 (Line 228) and considered in Sec.4 as a whole. When33

you take an algorithm Big Deal (note that you port it from the opposite case of discounts) and consider in the case34

γS ≥ γB, the procedure from Lines 213-227 can be applied: the only strategy that can be activated in the first step is35

10T−1 (see Appendix A.2.1, 3rd paragraph: we activate a strategy that has lowest last 1 position). This activation is36

provided via decreasing the price A(e) and increasing all prices A(1),A(10), . . . ,A(10T−2). After this step more37

possibilities for further "activations" arise.38

On an explicit description of the algorithm. Shortly, it is as follows. Remind: for static pricing, the optimal (Myerson)39

price can be found from maximization of HD (p) = p(1 − FD (p)). In our dynamic case, the optimal algorithm can be40

found similarly: (a) construct the matrix Ξ (a code to calculate its elements is in Appendix I); (b) construct the functional41

L(·) from Eq. (4); (c) find a vector vOpt s.t. it maximizes L(v), e.g., numerically using derivatives of L(·) provided in42

Lines 277-278; (d) convert the vector vOpt to the prices of the optimal algorithm by means of linear transformation43

w−1
γB (·), which is mentioned in Lines 255&249 and whose matrix is KT (γB,γB)−1 J−1

T ZT (γB)−1 (see Appendix A.2.2).44

On Line 42. Yes, we will clarify: different discounts have only been studied in other setting (worst-case one [7,8,30,31]).45

On Lines 75&77. Yes, we study deterministic algorithms, and, hence, a decision sequence is called a strategy (as in46

[7,30,31,59]). Note: it is easy to show that algorithms proposed in Sec.3 are optimal among probabilistic ones as well.47

On Line 99. The word "expected" does not correspond to Eq.(1), but it is a part of the notion "expected strategic48

revenue" which is the reference for the expression EV∼D[SRevγS,γB (A∗,V )] situated at the beginning of Line 100.49

On Line 171. Yes, γB is publicly known. See 1st answer for Rev.#2&#3 about the case when γB isn’t known precisely.50


