
Clarity and Positioning. While we were somewhat surprised about the comments in this regard (we dedicated 3-1

4 pages to just discussions and positioning, including nearly a page of related work), we now believe after careful2

considerations of the reviews that some of these discussions did not appear in the places where readers might expect3

them, e.g., closer to theorem statements. Given the page limits we had instead opted to discuss proof ideas close4

to theorem statements but should have reiterated and referenced previous discussions. We will move proof ideas to5

the appendix, and heed the various suggestions. In terms of related work, we strived to diligently overview the vast6

literature, although we missed some as pointed out by one reviewer (Reviewer 3); we however emphasize that the7

suggested references, while relevant, are somewhat peripheral to our main contributions (see below).8

Significance and Contributions. Our main contributions are twofold:9

(1) We derive the first general measures of discrepancy (transfer exponents) that yield tight rates in transfer for10

convergence of excess risk to zero. We argue that these new measures overcome significant limitations suffered by11

other discrepancies previously proposed in the literature, thereby describing many scenarios where transfer is possible12

but where this fact is not implied by any previously-defined notions of discrepancy (dA, Lp, KL-divergence, Kernel-13

mean discrepancy, Wasserstein). This is due e.g. to the fact that transfer is inherently an asymmetric problem (one14

distribution might have sufficient information on the other but not the other way around), so cannot be captured15

by metrics (L1, dA, Wasserstein, Kernel-mean discrepancy), and does not require that distributions have the same16

support (KL-divergence, density ratios). The recent notion of [18] has a similar flavor, but is concerned with specific17

smoothness assumptions on the regression function E[Y |X], and does not have a way to take into account the structure18

of an abstract hypothesis class H: for instance, [18] still requires distributions with the same support (as discussed19

in Related work section, and Example 1, lines 77-80 and 124-131). Indeed, our starting point for this work was to20

try to extend the insights of [18] to yield a general H-dependent discrepancy measure (for the purpose of overcoming21

shortcomings in the well-known dA and dY discrepancies, as we discuss in Example 2).22

(2) We show for the first time that many questions of a practical interest can in principle be addressed in a near-optimal23

way, without estimating the discrepancy between distributions, but through clever use of unlabeled data. For instance,24

nearly all previous works on transfer assumed no labeled target data, and therefore could not address practical questions25

such as the optimal mix of source and target labeled data (of potentially different sampling costs); in this regard, we26

give the first bounds in terms of any mix of nP source and nQ target labeled samples for VC classes and show27

that these bounds are tight. What’s surprising here is that the optimal rate behaves as min{EQ(ĥP ), EQ(ĥQ)}: i.e., is28

akin to ignoring one of the source or target data sets (but note that we still need to use both samples in order to decide29

which one to ignore in the end). This is then essential in assessing optimal sampling under mixed costs.30

We mitigate the usual worst-case nature of minimax analysis by showing that our bounds are tight for any given31

hypothesis class, and, tight in any noise regime (Theorems 1 and 2). We are not aware of any previous such32

individual tightness result in the context of transfer.33

What we left open. In this first step, we mainly focused on understanding the theoretical limits of transfer under34

mixed sampling costs, and outlined various theoretical procedures (non-implementable as they are based on ERM35

on 0-1 loss), which yield the insights that various practical questions can be addressed in principle with no prior36

distributional knowledge: i.e., from data-driven decisions alone. Given the simplicity of the algorithmic principles37

outlined, a natural next step is to investigate practical versions of these procedures based on convex surrogate losses,38

and extensions to address multiclass learning, regression, and other general prediction settings.39

Other questions by reviewers. Space limits prevent answering all reviewer questions, but we address a few below.40

Reviewers 1 and 2. The marginal transfer exponent γ indeed depends on unknown h∗
P . However we never have to41

estimate it, as we show that the ERM ĥP on source data is a good surrogate for h∗
P . Hence, using cheap unlabeled42

data, we can identify good hypotheses h using the fact that QX(h 6= ĥP ) ≈ QX(h 6= h∗
P ) which upper-bounds the43

excess error EQ(h) (this is all done rigorously in the paper). Unfortunately, using unlabeled data to drive choices, all44

we can adapt to is the marginal exponent which, unlike ρ, requires little knowledge of QY |X . Note however that if all45

we are interested in is the basic transfer problem of using nP and nQ given samples (sections 4 and 5), then we can46

adapt optimally to even ρ without estimating it (Theorem 3), which is surprising as we know very little about QY |X47

when nQ is small. Regarding the question about P, any set defined a-priori is fine (not data-dependent).48

Reviewer 3. We hope many of your concerns were addressed above. The references mentioned will be added. They49

use metric notions of discrepancy (see above), and in contrast to our work, largely leave open the question of tightness.50

Reviewer 4. The results allow PY |X = QY |X : i.e., we do not require them to be different in the upper bounds (and51

there exist classes where the lower bounds hold even with restriction to PY |X = QY |X ). As per Theorem 4, few target52

labels are required whenever γ is small and cP ≪ cQ; we will add relevant comments to the paper. The results hold53

for any VC class, and are instantiated simply by plugging in the VC dimension of the class.54

We thank you for pointing out the typo in line 249. “C” is meant to be C̃ and in fact should double at each iteration.55


