We would like to thank the reviewers for appreciating our novel contributions on the algorithmic and theoretical front! We focus on clarifying our experimental results in this rebuttal.

ModelFail was first introduced by Thomas and Brunskill [2016] to show the failure of model-based approach in the MDPs with some partial observability. In ModelFail, the agent cannot tell the difference between any of the states except for s_1, but both DM and SSD-IS require full observability. From the point of view of both DM and SSD-IS, the actions have no impact on state transitions or rewards, so every policy has the same cumulative reward (equal to the true cumulative reward of the behavior policy). A detailed discussion about why DM fails at ModelFail can be found in [Thomas and Brunskill, 2016, Section D.1]. MIS can handle partial observability by using observable states and the partial trajectories between them. Please refer Section 5.1 (line 258-262, there is a typo in Line 262, $\pi(a_{t+1}^{(i)}|s_{t+1}^{(i)})$ should be $\pi(a_{t+1}^{(i)}|?)$ where symbol “?” stands for “unobserved”, is an observed variable that the policy needs to react upon).

Also see Section C (line 567-575) in the supplement for more details.

We believe this is the reason and we will investigate it in details in our future work.

[Why DM fails at ModelFail and SSD-IS achieve EXACTLY the same results as DM at ModelFail?]

ModelFail was first introduced by Thomas and Brunskill [2016] to show the failure of model-based approach in the MDPs with some partial observability. In ModelFail, the agent cannot tell the difference between any of the states except for s_1, but both DM and SSD-IS require full observability. From the point of view of both DM and SSD-IS, the actions have no impact on state transitions or rewards, so every policy has the same cumulative reward (equal to the true cumulative reward of the behavior policy). A detailed discussion about why DM fails at ModelFail can be found in [Thomas and Brunskill, 2016, Section D.1]. MIS can handle partial observability by using observable states and the partial trajectories between them. Please refer Section 5.1 (line 258-262, there is a typo in Line 262, $\pi(a_{t+1}^{(i)}|s_{t+1}^{(i)})$ should be $\pi(a_{t+1}^{(i)}|?)$ where symbol “?” stands for “unobserved”, is an observed variable that the policy needs to react upon).

Also see Section C (line 567-575) in the supplement for more details.

[Why MIS outperforms SSD-IS in time-invariant environments (including MountainCar) when n is large?]

The time-invariant ModelWin and MountainCar we used in the paper are finite-horizon undiscounted MDPs. Even though these environments have time-invariant transitions, the state marginal distributions at each t actually change with time and only converge to the stationary distribution as $t \rightarrow \infty$. SSD-IS uses the stationary distribution ($t \rightarrow \infty$) to approximate that for all $t = 1, ..., H$ which is biased and not consistent even as the number of episodes $n \rightarrow \infty$. MIS, on the other hand, uses nearly unbiased and consistent estimators of the state marginals at every t. This allows MIS to outperform SSD-IS on Mountain Car when n gets large. We believe this is the reason and we will investigate it in details in our future work.

[Why does it (SSD-IS) achieve . . . perform as well as MIS for mountain car but eventually stops improving?]

Please check the answers at the beginning.

[‘‘If p_i is sampled uniformly at each time step, isn’t . . . setting equivalent to a time-invariant MDP with $p = 3.5$?’’]

Sorry for the confusion. Note that each transition probability p_i is only sampled before the experiments and fixed during the experiments for all episodes. We will clarify it in the final version.

References