
Referee 1: We thank the referee for thoughtful feedback. We will further emphasize in the introduction that the1

considered problem of estimating means with contextual side information is ubiquitous in real-world settings. In2

high-throughput biological studies it is important to estimate effect sizes for genes based on extremely small samples3

(e.g. 3 patients with cancer vs. 3 healthy) and there exists a rich annotation and categorization of genes to be used as4

covariates. In the surveying of subpopulations (e.g. by the US Census Bureau) one can improve noisy estimates (e.g.5

on average income) for small communities by using geographical and economic covariates. In baseball statistics, our6

methods can be used to improve estimation of the batting average of each player, say to predict their performance in the7

second half of a season from the first, and covariate information could include salary, team and previous performance.8

We chose the MovieLens dataset because it is familiar to the NeurIPS community and illustrates our main statistical9

considerations; we do not argue for the use of EBCF in Recommender systems. By the same token, however, typical10

Recommender systems are not good at predicting average ratings for sparsely watched items. Say a user comes across11

a movie on their own, then an improved rating estimate could help them choose whether to watch that movie or not.12

Furthermore, improved rating estimators could be useful to rank, say, new indie movies based on few initial ratings.13

As suggested by the referee we have added confidence intervals (CI) for all empirical results (see plot below). For14

Fig.3 we report standard CIs of half-width 2 × s.e. (standard error), for Fig.2 the error bars are inflated to 10 × s.e.,15

since otherwise they would not be visible at all.16
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Unbiased 0.098 (± 0.004) 0.098 (± 0.032)
XGBoost 0.145 (± 0.004) 0.183 (± 0.030)
SURE 0.061 (± 0.002) 0.064 (± 0.018)
EBCF 0.055 (± 0.002) 0.052 (± 0.012)
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Figure 1: Mean-squared error n�1
Pn

i=1(Z̃i � µ̂i)
2 in MovieLens analysis. The error is shown for

four different methods; averaged across all movies, across movies classified as both Horror and Sci-Fi
(Table) and locally averaged as a function of Ni, the number of users that rated each movie (Plot).

according to which the true rating µi of each movie is partially explained by its covariates Xi, but
also has an idiosyncratic and unpredictable component with a Gaussian distribution N (0, A). Recall
that we observe Xi and Zi for each i = 1, ..., n, and want to estimate the vector of µi. Given this
setting, if we knew both the idiosyncratic noise level A and m(x), the conditional mean of µi given
Xi = x, then the mean-square-error-optimal estimate of µi could directly be read off of Bayes’ rule,
µ̂⇤

i = t⇤m,A(Xi, Zi), with

t⇤m,A(x, z) := Em,A [µi | Xi = x, Zi = z] =
A

�2 + A
z +

�2

�2 + A
m(x). (2)

The behavior of this shrinker depends largely on the ratio A/�2: As this ratio gets large, the Bayes
rule gets close to just setting µ̂i = Zi, whereas when the ratio is small, it shrinks everything to
predictions made using covariates.

Now in practice, m(·) and A are unlikely to be known a-priori and, furthermore, we may not believe
that the hierarchical structure (1) is a perfect description of the underlying data-generating process.
The main contribution of this paper is an estimation strategy that addresses these challenges. First, we
derive the minimax risk for estimating µi in model (1) in a setting where m(·) is unknown but we are
willing to make various regularity assumptions (e.g., that m(·) is Lipschitz). Second, we show that a
feasible plug-in version of (2) with estimated m̂(·) and bA attains this lower bound up to constants that
do not depend on �2 or A; we call this plug-in version EBCF (Empirical Bayes with Cross-Fitting).

Finally, we consider robustness of our approach to misspecification of the model (1), and establish an
extension to the classic result of James and Stein [1961], whereby without any assumptions on the
distribution of µi conditionally on Xi, we can can show that our approach still improves over both
simple baselines µ̂i = Zi and µ̂i = m̂(Xi) in considerable generality. We also consider behavior of
our estimator in situations where the distribution of Zi conditionally on µi may not be Gaussian, and
the conditional variance �2

i of Zi given µi may be different for different samples.

Beyond these theoretical findings, we also demonstrate the empirical performance of EBCF on
MovieLens: We randomly choose 10% of the 138,000 users in the dataset and attempt to estimate the
movie ratings from them. We summarize the i-th movie, by Zi, the average of the Ni users (in the test
dataset) that rated it. We further have covariates Xi 2 R20 (e.g. genres, year). As our pseudo ground
truth for movie i we use Z̃i, the average movie rating among the remaining 90% of users and then
report the error

Pn
i=1(Z̃i � µ̂i)

2/n, where n is the total number of movies (n = 12481 after filtering
movies with less than 3 user ratings in the training set). We compare the unbiased estimator µ̂i := Zi,
the regression prediction µ̂i := m̂(Xi), where m̂ is the fit from cross-validated boosted regression
trees, as implemented in XGBoost [Chen and Guestrin, 2016], the empirical Bayes estimator (2)
without covariates that shrinks Zi towards the grand average

Pn
i=1 Zi/n, with tuning parameters

selected via SURE (Stein’s Unbiased Risk Estimate) following [Xie et al., 2012], and the proposed
EBCF method with XGBoost as the blackbox predictive model. The average error across all movies
and across Sci-Fi & Horror movies is shown in Figure 1. In Figure 1 we also show the relationship
between the error (Z̃i � µ̂i)

2 and the rank of the per-movie number of reviews Ni using a LOESS
smoother [Cleveland and Devlin, 1988]. We observe that the 3 estimators that use Zi, do a perfect
job for large Ni and a worse job for smaller Ni. In particular, the error of Zi blows up at small Ni,
and the error gains of EBCF occur precisely at low sample sizes. On the other hand, the XGBoost
prediction has an error that does not get reduced by larger Ni, but is competitive at small Ni.
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We have also analyzed an additional real world dataset, the Communities and Crimes unnormalized dataset from the17

UCI repository. Our task is to predict the nonviolent crime rate per 1k population for each community. We make the18

problem harder by using hypergeometric sampling to subsample the population of each community to B ∈ {200, 500}.19

The mean squared errors and 95% CIs are as follows for B = 200: Unbiased 224(±16), XGBoost 168(±20), SURE20

184(±19) and EBCF 149(±20). For B = 500 they are: Unbiased 92(±8), XGBoost 122(±15), SURE 86(±8) and21

EBCF 80(±9). The revised manuscript will contain the details of this analysis and additional simulation results.22

Referee 2: We thank the referee for the feedback. EBCF is the proposed method and stands for Empirical Bayes with23

Cross-Fitting; we will further clarify in the text. Furthermore, we have added standard errors (see reply to Referee 1).24

Referee 3: We want to clarify that our results are not just “standard linear/nonparametric regression” and allowing25

A > 0 is crucial to our method. Only in the case A = 0 do our results collapse to standard regression. Let us note some26

differences (which we will further clarify in the manuscript): First, our objective is to estimate the µi with small mean27

squared error (MSE), not the regression function m(·). Second, for A > 0 the MSE for estimating µi is strictly > 0 and28

cannot go down to 0 even as n→∞. In standard regression treatments the error does go to 0. Instead, in our minimax29

analysis we consider the difference between the mean squared error and the Bayes risk (the regret): We then proceed to30

show that when the covariates and m(·) satisfy classical regression assumptions (e.g. bounded Xi and Lipschitz m(·)),31

then the regret in estimating µi is precisely characterized by the familiar minimax rates for nonparametric regression.32

This result is not a trivial consequence of existing results in nonparametrics; it is instead one of our contributions33

through Lemma 1 and Theorem 2.34

On the other hand, we agree with the referee that e.g. bounded Xi seems restrictive. This is why we then tackle the35

problem of robustness to misspecification in Section 4. Here our results are novel even under the pure regression setting36

(i.e. A = 0). Theorem 6 holds under no assumptions on m̂(·) (it could be a deep neural net or a k-NN regressor or ...),37

nor on m(·) nor on the support of Xi. Prop. 7 also makes no assumptions on the support of Xi.38

Finally, we thank the referee for an excellent suggestion on strengthening our results; we present a simplified sketch39

here: Consider the setup of the paper with n observations Zi with variance σ2, but now the n + 1-th observation40

has variance τ2 which may be 6= σ2. Then in the Lipschitz case, extending Theorem 4, we can prove a regret41

that scales as MSE− Aτ2

A+τ2 ∼ τ4

A+τ2 (
A+σ2

n )2/3 (note that Aτ2/(A+ τ2) is the Bayes risk). Letting τ2 ∼ 1/N and42

rearranging, similar to the referee’s insight, we get MSE1/2 ∼ N−1/2 +N−1n−1/3. The rapid decay of the 2nd term43

in N theoretically and quantitatively verifies our empirical results (e.g. Figs 2b,c): The quality of the regression fit is44

important only for small N where we benefit most from empirical Bayes shrinkage, while for large N it does not matter.45

Referee 4: We thank the referee for the kind words and a very detailed summary of our contributions. One short-46

coming of the method is that the covariates Xi can modulate the effect size distribution only through the map47

Xi 7→ N (m(Xi), A). We have comprehensively studied this case in the paper, however in future work we hope to48

explore additional effect modifications, for example Xi 7→ N (0, A(Xi)) could be more relevant for differential gene49

expression studies in biology. Heavy-tailed priors and priors with a point mass at 0 are also of interest.50


