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Referee 1: We thank the referee for thoughtful feedback. We will further emphasize in the introduction that the
considered problem of estimating means with contextual side information is ubiquitous in real-world settings. In
high-throughput biological studies it is important to estimate effect sizes for genes based on extremely small samples
(e.g. 3 patients with cancer vs. 3 healthy) and there exists a rich annotation and categorization of genes to be used as
covariates. In the surveying of subpopulations (e.g. by the US Census Bureau) one can improve noisy estimates (e.g.
on average income) for small communities by using geographical and economic covariates. In baseball statistics, our
methods can be used to improve estimation of the batting average of each player, say to predict their performance in the
second half of a season from the first, and covariate information could include salary, team and previous performance.

We chose the MovieLens dataset because it is familiar to the Neur]PS community and illustrates our main statistical
considerations; we do not argue for the use of EBCF in Recommender systems. By the same token, however, typical
Recommender systems are not good at predicting average ratings for sparsely watched items. Say a user comes across
a movie on their own, then an improved rating estimate could help them choose whether to watch that movie or not.
Furthermore, improved rating estimators could be useful to rank, say, new indie movies based on few initial ratings.

As suggested by the referee we have added confidence intervals (CI) for all empirical results (see plot below). For
Fig.3 we report standard CIs of half-width 2 x s.e. (standard error), for Fig.2 the error bars are inflated to 10 X s.e.,
since otherwise they would not be visible at all.
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We have also analyzed an additional real world dataset, the Communities and Crimes unnormalized dataset from the
UCT repository. Our task is to predict the nonviolent crime rate per 1k population for each community. We make the
problem harder by using hypergeometric sampling to subsample the population of each community to B € {200, 500}.
The mean squared errors and 95% Cls are as follows for B = 200: Unbiased 224(£16), XGBoost 168(4+20), SURE
184(419) and EBCF 149(+20). For B = 500 they are: Unbiased 92(+8), XGBoost 122(£15), SURE 86(+8) and
EBCF 80(+9). The revised manuscript will contain the details of this analysis and additional simulation results.

Referee 2: We thank the referee for the feedback. EBCF is the proposed method and stands for Empirical Bayes with
Cross-Fitting; we will further clarify in the text. Furthermore, we have added standard errors (see reply to Referee 1).

Referee 3: We want to clarify that our results are not just “standard linear/nonparametric regression” and allowing
A > 0is crucial to our method. Only in the case A = 0 do our results collapse to standard regression. Let us note some
differences (which we will further clarify in the manuscript): First, our objective is to estimate the ; with small mean
squared error (MSE), not the regression function m(-). Second, for A > 0 the MSE for estimating ; is strictly > 0 and
cannot go down to 0 even as n — oo. In standard regression treatments the error does go to 0. Instead, in our minimax
analysis we consider the difference between the mean squared error and the Bayes risk (the regret): We then proceed to
show that when the covariates and m(-) satisfy classical regression assumptions (e.g. bounded X; and Lipschitz m(-)),
then the regret in estimating p; is precisely characterized by the familiar minimax rates for nonparametric regression.
This result is not a trivial consequence of existing results in nonparametrics; it is instead one of our contributions
through Lemma 1 and Theorem 2.

On the other hand, we agree with the referee that e.g. bounded X; seems restrictive. This is why we then tackle the
problem of robustness to misspecification in Section 4. Here our results are novel even under the pure regression setting
(i.e. A = 0). Theorem 6 holds under no assumptions on 77(+) (it could be a deep neural net or a k-NN regressor or ...),
nor on m(+) nor on the support of X;. Prop. 7 also makes no assumptions on the support of X,.

Finally, we thank the referee for an excellent suggestion on strengthening our results; we present a simplified sketch
here: Consider the setup of the paper with n observations Z; with variance o2, but now the n + 1-th observation
has variance 72 which mzay be 7& o? Then in the Lipschitz case, extendlng Theorem 4, we can prove a regret
that scales as MSE — 75 ~ AT — (AJ;" )2/3 (note that AT2/(A + 72) is the Bayes risk). Letting 72 ~ 1/N and
rearranglng, similar to the referee’s insight, we get MSE 1/2 —1/2 4 N='n~1/3 The rapid decay of the 2nd term
in N theoretically and quantitatively verifies our empirical results (e.g. Figs 2b,c): The quality of the regression fit is
important only for small NV where we benefit most from empirical Bayes shrinkage, while for large NV it does not matter.

Referee 4: We thank the referee for the kind words and a very detailed summary of our contributions. One short-
coming of the method is that the covariates X; can modulate the effect size distribution only through the map
X; — N(m(X;),A). We have comprehensively studied this case in the paper, however in future work we hope to
explore additional effect modifications, for example X; — A(0, A(X;)) could be more relevant for differential gene
expression studies in biology. Heavy-tailed priors and priors with a point mass at 0 are also of interest.



