
We thank the reviewers for their comments. As requested by R1/R3 we first report an empirical comparison with1

previous work. We then address reviewer’s comments individually (due to space limits please zoom in the tiny figures).2

ε
Bε Time (s) Tuning Time (s)

Ours AM [12] Ours AM [12] Ours AM [12]
.01 .476 ± σ .477 ± σ 13 ± 1 12 ± 1 − 482 ± 20
.005 .434 ± σ .436 ± σ 16 ± 1 15 ± 1 − 557 ± 14
.001 .388 ± σ .401 ± σ 20 ± 2 7 ± 2 − 242 ± 8

Table 1: Comparison of our algorithm and [12] on Ellipses (same setting in the paper). σ < 10−4. Figure 1

m
n

100 1000
10 29± 4 s 33 ± 6 s
50 8± 1 min 9 ± 1 min
100 15 ±1 min 24 ± 2 min

Table 2: Time to reach relative improve-
ment 10−4 of Bε (ε = 0.01).

3

4

Comparison: we focus on [12,18] since they consider entropic regularization similarly to our setting. Since no code5

was available, experiments are based on our implementations of [12,18] (run on a Nvidia Tesla M40).6

Alternating Minimization (AM) [12]: AM iteratively optimizes the support points and weights of the barycenter.7

Table 1 reports the value of the objective functional Bε and the running times (run until relative improvement of8

Bε was < 10−3) on the “30 ellipses dataset” (see our paper) for ε = 0.01, 0.005, 0.001. We note that while a9

single run of AM is slightly faster, it exhibits worse performance (in particular as ε decreases). Moreover, dif-10

ferently from our method, optimization in [12] requires tuning multiple parameters (e.g. step-size), leading to11

significantly longer times. We run AM with a budget of 500 support points. Our method stops at ∼ 300 support points.12

Figure 2: Evolution of the barycenter of 5 Gaussians com-
puted by [18] (Top row) and our algorithm (Bottom) over
time. (Right column) distance to consensus (see [18]) and
the Bε functional (with markers at 10, 30, 120 sec).

Decentralize Barycenters [18]: similarly to our method, [18] can compute13

barycenters of continuous measures (via sampling), but the barycenter’s sup-14

port points are fixed a priori and only the weights are computed. Moreover15

since [18] minimizes a different objective functional (it does not consider16

the unbiased formulation of the Sinkhorn divergence), here we focus on17

a qualitative comparison. We compute the barycenter of 5 bidimensional18

Gaussian measures N (m, σ2Id2), with m randomly sampled in [0, 1]2 and19

σ2 in [0, 1]. We set ε = 0.01 for both methods. For [18] we used Alg. 220

with complete agents’ graph and a 50× 50 support grid in [0, 1]2. Fig. 221

(left) shows how barycenters evolve over time. Our method appears to22

better capture the properties of the target barycenter, converging faster23

towards its solution. This is also reflected by the decreasing rate of the two24

corresponding measure of convergence for the two methods Fig. 2 (Right).25

R1 1. We thank the reviewer for the additional reference, which we will add to the paper. 2. There are several options26

for the MINIMIZE routine: for X finite (e.g., images, such as our experiments on ellipses and k-means), we evaluate the27

function at all points of X (in a vectorized way) and select the minimizer by a sorting algorithm. If X is a continuous28

domain, we rely on first order methods (e.g. Gradient Descent) applied in parallel to multiple starting points. For29

instance, in our experiments on Gaussians, we used the python scipy.optimize routine as a plugin optimizer.30

R2 1. We thank R2 for the reference "Entropic regularization of continuous optimal transport problems". We note that31

this work studies regularization with negative entropy of the transport plan π, whereas in our problem (1) the regularizer32

is the Kullback-Leibler between π and α⊗ β. These two problems are not equivalent, e.g., if α or β are not absolutely33

continuous wrt Lebesgue. In our case, existence of solutions is a consequence of [28], which studies DAD problems in34

continuous settings. Indeed, existence of maximizers for (2) is equivalent to existence of solutions to the optimality35

equation (4), which is a special case of a DAD problem: thus, existence of maximizers for (2) follows from [28, Thm 1].36

We cited [28] on line 67 and also discussed this issue in detail in Appendix B.2 (see Cor B.6). 2. The interpretation37

of (2) as primal and (1) as dual is indeed the way to derive strong duality, since in this interpretation the qualification38

conditions hold (see e.g., the proof of Thm. 3.2 in [8]). However, problem (2) can also be seen as the dual of (1) when39

the involved spaces are endowed with the weak topologies (this requires formulating the Fenchel-Rockafellar duality in40

locally convex spaces [8, Thm A.1]); this follows the convention used in optimal transport literature. 3. The work [28]41

is in infinite dimensional setting (see also the convergence of the Sinkhorn-Knopp algorithm in Appendix B.3.)42

R3 1. The exponential slow-down wrt ε reflects recent findings on the Sinkhorn divergence, where similar scaling was43

observed for, e.g., its sample complexity [21]. However, as also reported in Table 1 above, in practice the slow-down44

does not seem too severe. In the paper we used ε = 0.001, which typically yields visually good results. 2. According to45

Thm 3 the convergence rate depends on the Lipschitz constant of the gradient of the objective function. Since ∇Bε is a46

weighted sum of m mappings with same Lipschitz constant and the weights ωi sum to 1, the Lipschitz constant of∇Bε47

does not depend on m. 3. Scaling: we computed the barycenter of m distributions with n points each (obtained by48

randomly displacing and sampling from the 2D distribution in Fig. 1). Table 2 shows the runtimes of our algorithm49

as m and n vary. We observed that the main bottleneck of our method are the m SINKHORNKNOPP computations50

at each iteration (e.g. on average ∼ 94% of the total time for m = 100 n = 1000). We plan to address this by i)51

parallelizing with respect to the m distributions and ii) adopting the very recent toolbox for Sinkhorn computation52

www.kernel-operations.io/geomloss/, which can yield a ∼ 50-100× speed-up to SINKHORNKNOPP. Such a53

boost would allow us to consider larger scale settings. 4. Initialization: a single Dirac Delta randomly sampled in X .54

www.kernel-operations.io/geomloss/

