
We would like to thank all the reviewers for their effort, and their thoughtful comments. We are glad that the reviewers1

appreciated our contribution, and we will do our best to address the objections and minor errata that were pointed out.2

Rev1 L 11-12. Absolutely. Being formal, it should be “the gradient associated to the pullback of f along exp”. We will3

change it to “the gradient with respect to the parametrization”. Prop 6.1. This was a different paper by the same authors4

based on the paper cited here and published also in 2009. In the paper cited here, they just establish the state of the art5

for computing the exponential of matrices. For the gradient, we implement the method based on the exponential of6

the block matrix [X,H; 0, X] for simplicity (cf., line 374 in the file exp_numpy.py). The standard reference for this7

method is: Roy Mathias. A chain rule for matrix functions and applications. (1996). L 42. It is indeed misleading.8

We will change it to “on which standard convergence results still apply”. Thm 4.3 We will change “is equivalent” to9

“accounts for”. The same can be said about higher order methods. Def 3.1. Absolutely. L 138 and 161. Indeed, we have10

the volume form and the measure induced by the metric. We chose not to mention them in the main paper for simplicity.11

In l.138 we do mean “in almost all the manifold” in a measure-theoretical sense with respect to a measure induced by12

some metric. These two things indeed deserve a clarifying footnote. 2nd order. We believe that this could be extended13

to that framework. By the definition of the Hessian, one would need to be able to compute the covariant derivative of14

the adjoint of the exponential (or whichever retraction you are working with). This can be done for most manifolds on15

which you can compute geodesics (e.g. naturally reductive homogeneous spaces).16

Rev2 Regarding the efficiency concerns, we would like to note that, although the main examples that we presented17

were based on the exponential maps, one of the main contributions of the paper is to extend the framework in (Lezcano-18

Casado 2019) to retractions through trivializations and dynamic trivializations. Retractions are the way to perform cheap19

optimization on manifolds (cf., Section 2). Also Note that, as pointed out in point 1. below, in the context of RNNs, the20

use of a retraction does not yield any time improvement over the exponential. On the gains of converting the problem to21

Rn, one is able to use well-understood optimization methods developed for Rn that do not have generalizations for22

manifolds. 1. The DTRIV methods come at no extra cost compared to regular trivializations. When compared to other23

methods like computing the Cayley map, computing the exponential of matrices is just twice as slow. Now, we use24

an implementation trick, by which using these and other parametrizations have a computationally negligible cost (cf.,25

Rev3, point 2). The final cost in CPU time of computing the exponential or the Cayley map is O(n3) per iteration,26

where n is the hidden size (same as a naïve multiplication of matrices), vs. O(b`n2) of computing backprop, where27

b is the batch size, and ` is the average length of the processed sequences. Furthermore, note that the Cayley map is28

also a retraction, so it also can benefit from being implemented as a DTRIV. We will add this point and examples of29

other retractions to section E. 2. We chose RMSPROP for most experiments because it was the optimizer used in the30

other papers, and we wanted to show a fair comparison with the other methods. It might be possible to get better results31

than the ones shown in the paper with other optimizers, but we believe that this is very much problem-specific, so we32

preferred to stick to what we believe would be the fairest comparison. 3. The case of the sphere and the Stiefel manifold33

can easily be solved by looking at them in the context of reductive homogeneous spaces, and deduce the formula of34

their geodesics from this. A standard reference for this is P.A Absil Optimization Algorithms on Matrix Manifolds.35

The geodesics in this case can be expressed in terms of the exponential of matrices, and since we proved in Prop 6.1 a36

formula to compute the gradient with respect to the exponential of matrices, we can then implement a DTRIV version37

of them in these manifolds. We will include the sphere and the Stiefel manifold examples worked out, as well as the38

hyperbolic space (useful for word embeddings) and how to deal with some standard retractions like the Cayley map or39

the QR retraction on the Stiefel manifold, or following a Euclidean geodesic and projecting back in the sphere. We hope40

this makes the paper more accessible to non-experts.41

Rev3 1. The Riemannian and the Lie parametrization on compact Lie groups agree, so in this case it would be the same.42

For other groups (or homogeneous spaces) the methods do not generally agree, (cf., section E). In any case, both of43

them can be shown to converge in the dynamic trivialization setting, as per Thm 4.3. and the discussion in sec 4.1 and44

4.2. With a bit more work, one can show rates of convergence on matrix Lie groups for Lipschitz functions, matching45

with exactly the same constants, those of Riemannian gradient descent, but thit is outside of the scope of this paper.46

2. The exponential and its gradient takes about twice the time to approximate than the Cayley and its gradient. Now,47

we implement the trick outlined in Section 4.3 in (Lezcano-Casado 2019). Using this trick, the computation of the48

parametrization is negligible both for the exponential and the Cayley, compared to the cost of computing the whole49

backpropagation step. See the section in the paper mentioned above for an in-depth discussion. Moreover, we note that50

the Cayley map is also amenable to use in the DTRIV context, and it enjoys the same favorable properties compared to51

just using the naïve Cayley approach. As mentioned in Rev2, 1), we will include these and other examples in the final52

version of the paper. 3. On the theoretical side, we have not pursued a detailed analysis, but this can be carried using53

ideas similar to those in DW Dreisigmeyet Direct Search Methods on Reductive Homogeneous Spaces (2018). From54

the practical point of view, we observed that choosing K = ∞ was usually good enough for most practical purposes,55

and we will suggest to do so in the paper. We leave for future research to benchmark the empirical performance of56

dynamical schedules for K.57


