
Table 1: Comparison of MSE for Bayesian linear regression in a 1,000 dimensional space with 8,000 training examples

MSE Total runtime # Burn-in iters # Total iters Hyperparameters Acceptance rate

MH 0.273 35 mins 50,000 500,000 q=0.0035 23%
AM (diag) 0.0267 35 mins 50,000 500,000 q=0.0035, s=0.05 22%
AM (diag) 0.00729 70 mins 100,000 1,000,000 q=0.0035, s=0.05 29%
SA (diag) 0.00174 33 mins 50,000 100,000 q0=1, N=500 45%1

We thank the reviewers very much for their time and valuable feedback. We will incorporate all of the suggestions2

when revising our paper, and we will post our revised work to arXiv to increase its impact and audience.3

Reviewer 1: For the experiments in our paper, we focused on dimensions which we think are commonly used to4

understand, compare and benchmark MCMC methods. We note that our MCMC method outperforms NUTS, the5

state-of-the-art gradient-based MCMC sampler, on the MNIST dataset in dimensions up to 50 (line 302 and Appendix 8),6

despite not using any gradients. We believe that the advantages we observed for our MCMC method also extend to higher7

dimensional spaces. In Appendix 9, we describe the results of applying MCMC to a 6400 dimensional groundwater8

flow model using a diagonal covariance matrix for the proposal distributions. This model is non-differentiable with a9

highly challenging posterior. Our MCMC method significantly outperforms the other MCMC methods.10

As another experiment, we simulate a synthetic linear regression dataset following the procedure in our paper (lines11

241-247) in a 1000 dimensional space. Each entry of the feature matrix X is first sampled i.i.d. from N (0, 1) and12

then each column j of X is scaled by the exponential of 2 ∗ rand(N (0, 1)). Finally, y ∼ N (Xβ + β0, 1002). We13

compute the ground truth posterior mean µ∗ ∈ R1000 by a long run of NUTS, a gradient-based sampler. We run14

several MCMC methods for a fixed amount of time, and after a burn-in phase, use the samples to estimate the posterior15

mean, µ̂ ∈ R1000. We compare the MCMC methods by the mean-squared error (MSE) between µ̂ and µ∗ in Table 1.16

SA-MCMC outperforms MH and AM. SA is more than 10x more sample efficient than AM since SA can achieve a17

lower MSE with 100,000 likelihood evaluations than AM with 1,000,000 likelihood evaluations. While computing the18

substitution probabilities in SA-MCMC is time-consuming, the sample efficiency of SA-MCMC can be crucial for19

problems where the likelihood evaluation is much more expensive, such as simulations in reinforcement learning.20

Since SMC is designed for sequence problems and cannot be directly applied, we compared our method with Population21

Monte Carlo (PMC) [35] which is an iterated importance sampling method with connections to SMC. At each iteration,22

we sample N particles using the same proposal distribution as in our paper, q(·) = N (·|µ(S),diag(Σ(S))). For each23

particle xn, we compute the weight wn = p(xn)/q(xn) which is used in the estimator. Finally, we resample a set24

of N unweighted particles by multinomial resampling based on the weights wn. We applied PMC to the logistic25

regression datasets in our paper. We initialized the N particles from N
(
0, σ2

q0I
)

where we tuned σq0 ∈
{

10i, 3 ∗ 10i
}

26

for i ∈ {−2,−1, 0, 1}. On 7-dim census, PMC with N = 100 and any σq0 led to the N particles becoming identical;27

sampling from a zero variance Gaussian then raised an error. While PMC with larger N was able to accurately represent28

the posterior mean in 1 million likelihood evaluations for a few choices of σq0 , we found PMC was very unstable.29

Out of the 5 random runs for each hyperparameter, only 2 of the 5 runs for (N, σq0) = (500, 0.3), 2 of the 5 runs for30

(N, σq0) = (500, 1.0), and 1 of the 5 runs for (N, σq0) = (1000, 3.0) succeeded out of all the runs. On 11-dim MNIST,31

we find that PMC failed to estimate the posterior for all choices of N ∈ {100, 500, 1000} and σq0 within 1 million32

likelihood evaluations. The best log probability of the mean of the particles was -3197 for (N, σq0) = (1000, 0.3) while33

the log probability of the typical sample from the posterior is around -2490. Note that all of the MCMC methods in34

our paper are able to accurately estimate the posterior in less than 100,000 likelihood evaluations. In Appendix 7, we35

present visualizations of the posterior distributions. Given the narrow and sharply peaked posterior, PMC suffers from36

a weight degeneracy problem (like particle filters) where almost all of the weight is concentrated on a few particles.37

This leads to highly inaccurate estimates of µ(S),diag(Σ(S)) and very inefficient proposals. We believe that PMC as38

importance sampling suffers significantly from the curse of dimensionality: PMC does not work for our 11-dim MNIST.39

Reviewer 2: SA-MCMC uses a “global” proposal distribution like IMH but unlike many MCMC methods. While SA-40

MCMC is very good at adapting the proposal distribution, SA-MCMC will not work well when the target distribution41

cannot be approximated well by any member in our family of proposal distributions. Specifically, the assumption that42

the proposal densities which best approximate the target having uniformly heavier tails than the target is important (lines43

179-191). We find SA-MCMC is extremely robust to a poorly chosen initial distribution in the 11-dim MNIST example:44

for any value of σq0 from 10−3 to 101, SA-MCMC works perfectly (Figure 5, lines 292-300). In a 1000 dimensional45

linear regression example, SA-MCMC works with σq0 = 1 and 100,000 iterations (see our reply to Reviewer 1).46

Reviewer 3: The suggestion to have our proposal family be a family of mixture distributions and for our method to47

learn the optimal mixture distribution (within a given family) is a very important future direction. We will elaborate on48

the discussion and connection with the Normal Kernel Coupler in our revision. "Parallel Metropolis-Hastings Coupler"49

is an interesting future direction. We will add the references and discuss future directions in our revision.50


