
Paper ID: 4658. 0. We present results for more powerful attacks from Madry Challenge leaderboard for MNIST and1

CIFAR10. We chose “Distributionally Adversarial Attack” (DAA) by Zheng as it appears atop the leaderboards for2

both MNIST and CIFAR10 datasets. Results for the original Tanh(16) model are shown in Table 1. Results are also3

shown for an “improved” version of Tanh(16) model which uses more convolutional filters per layer (32 instead of 25),4

and Gaussian noise with std. dev 0.25 (instead of the 0.15). These changes improve robustness of the model.5

1. The term “white-box” means that the adversary knows everything about the model, i.e. full ensemble with all layers6

and every rotation used by all ensemble members.7

2. We present results in Table 1 for the case of 32 bit codes. Intuition indeed suggests this code should be more powerful.8

In general, though, we find robustness asymptotes with increasing code length; this appears related to the “rank” of the9

coding matrix. Increasing code length relative to number of classes likely results in increasingly correlated logits. Due10

to bit dependence, the effective Hamming distance does not grow with code length.11

3. We feel that the Reviewer’s contention that “Any continuous function with the same limiting behavior will have this12

behavior.” is not relevant; we constructed a method to estimate probabilities (eq 3) which does not have this behavior.13

4. Euclidian volume is relevant for uncertainty; consider the following. Let y (δy) denote the softmax’s logits14

(change) corresponding to an input x. Let J denote Jacobian matrix of logit layer evaluated at x. By Taylor’s theorem,15

δy ≈ J × δx. In general we don’t know singular vectors of J , and δx is controlled by the adversary so can point in16

any direction. J is likely to be full row rank so δy can point in an arbitrary direction. Without further assumptions on17

adversary, if Euclidean volume (in y-space) associated with uncertainty is vanishingly small (as with softmax), it is18

easy to find δx whose induced δy moves into a region of high-confidence; i.e., the adversary can reach a region of high19

confidence by perturbing x to x+ δx regardless of x’s location in input space. Empirical evidence of this: see Fig 3(c)20

in paper; softmax is usually highly confident even for an input which is random noise.21

5. The Reviewer’s suggestion to consider distribution of activations to the softmax layer seems reasonable for data22

known to lie on the training manifold. However, adversarial (and ‘Random” inputs) are (way) off this manifold.23

6. Rationale for design choices used for the correlation decoder are simply to yield a valid probability estimate24

(non-negative, sum to 0). The logistc maps (unnormalized) zk to a similar range as the code elements in C; ReLU25

ensures probability estimates are non-negative. We don’t aim to achieve carefully calibrated probability estimates; we26

agree with the Reviewer that such an undertaking may reveal other designs which are better suited for precise calibration.27

Our results in Figures 3(a)-(c) indicate our probability estimates are still far better than those of conventional models.28

7. Thank you to Reviewer for pointing out Theorem 1 is Plotkin bound; we will drop proof and cite in revision.29

8. That using softmax to convert logits to probabilities is not a good idea has been established in many papers; see30

e.g., “On Calibration of Modern Neural Networks” by Guo et Al.). Our empirical results (e.g., Fig 3 in te main text)31

also clearly show this. Some corrective action is needed (such as Platt scaling). However, our tests indicate that Platt32

scaling still produces overconfident estimates on adversarial and noise inputs (it appears to only calibrate on the training33

manifold). By contrast, our approach appears well-behaved even off the training manifold.34

9. The Lipschitz constant of the network is not larger due to code-induced widening. The final 2 layers of Madry’s35

MNIST model are 1. Fully connected layer of 1024 units. 2. Softmax layer of 10 units (softmax layer). The final 236

layers of our model are 1. Fully connected layer of 16 units (i.e. “code” layer); 2. Final layer of 10 units (computes37

probability using eq (3) of main text). Compared to typical architectures, ours does not induce widening of the network.38

10. The fact that we used 2 classes in Section 2.3 is not essential; key point is that larger Hamming distance (=4)39

increases Euclidean distance between high-probability regions; Point 4. above elaborates on utility of Euclidean40

distance. Reviewer’s point is still well-taken, and in the revision we will reword this section to consider M > 2 class41

example using a Hadamard matrix of code length 8 (which has Hamming distance 4). Fig. 2 would then correspond to42

fixing 5 of the logits and examining the remaining 3. Such a code would still have a Hamming distance of 4, and the key43

idea that multiple logits (instead of a single logit as with softmax) need to be altered to effect a class change still holds.44

11. We were unclear about meaning of Reviewer’s comment on “the relationship between adversarial constraints at45

network input and adversarial constraints before decoding layer”. But, our objective in the paper was to explicltly46

consider an adversary that was minimally constrained at the input (i.e. could generate L∞, L2, rotations, noise attacks).47

Table 1: Accuracies against various attacks; “-”: experiment was not run. “*”: training terminated due to time
constraints. model was still learning; result will improve with more training. MNIST: ε = 0.3; CIFAR10: ε = .031

Model Dataset Code Benign PGD
ε = 0.3(.031)

PGD
ε = 0.4

DAA
ε = 0.3(.031)

.

Tanh(16) MNIST H16 .9911 .853 .49 0.848
Tanh(32) MNIST H32 .9901 .847 .472 0.821
Tanh(16)_Improved MNIST H16 .9925 .901 .541 0.888
Tanh(16) CIFAR10 H16 .848* .578 - .551
Madry CIFAR10 I10 .873 .470 - .447


