We thank the reviewers for their useful comments and suggestions. We are glad that the reviewers found our approach to be novel (R2, R3, R4), general and significant (R4), a valuable contribution (R2), appreciated its superior performance (R2, R3, R4), and found our paper to be clear (R2, R3). We now address their requests and concerns.

Answers to R2:

- **Q1 Additional baselines:** We ran this baseline of sampling answers from a uniform distribution. This gets an accuracy of 40.25% (compared to 47.11% with our approach using the same baseline architecture). As a recall, our current baseline gets 38.46%. Inspired by this suggestion, we also tested sampling answers from a uniform distribution per question-type. This gets an accuracy of 42.11%. We will add these two new baselines in Table 1.

- **Q2 Grounding ability, interpretability and future works:** We ran new experiments on the VQA-HAT dataset to quantitatively validate that models trained with the RUBi strategy on VQA 1.0 improves the ability to attend to the "right" regions of the image. We report 0.4551 in rank-correlation (higher is better) with our baseline architecture and 0.4671 when trained with RUBi (see Table 2 in VQA-HAT paper for reference; recall that we use image features from [15]). Interestingly, our approach improves the grounding ability without being designed to do so explicitly. We will add a new table of results on VQA-HAT including different architectures, as well as qualitative results similar to the attention maps from Figure 6 of the VQA-HAT paper. These visualizations will allow us to discuss about interpretability and grounded/symbolic reasoning. Also, we will add details about future works in the conclusion.

Answers to R3:

- **Q1 Significance of \(c_q'\):** We ran new experiments to evaluate the usefulness of \(c_q'\). First, we fixed \(c_q'\) to be the identity (i.e. we removed \(c_q'\) while \(c_q\) receives gradients from \(L_{QO}\)). We report an accuracy of 5.38% on VQA-CP v2 with our baseline architecture. This low performance is expected since \(c_q\) is designed to output a 0-1 mask using the sigmoid, and not to output logits. We agree that the term "classifier" to define \(c_q\) was unclear. We will change it. Secondly, we removed both \(c_q'\) and the question-only loss \(L_{QO}\). We report a slightly lower accuracy of 46.08% (-1.03 compared to a training with the full RUBi strategy) for the baseline architecture. Intuitively, the 0-1 masks produced by \(c_q\) must be good enough to reduce the importance of biases early during training. \(c_q'\) and \(L_{QO}\) provides an additional supervision to \(c_q\) helping it to generate better masks, earlier in the training. We will add a new table of results about \(c_q'\). We will also improve the discussion about \(c_q'\) and \(L_{QO}\).

- **Q2 Comparison with other candidate models:** We experimented with different fusion techniques to combine the output of \(c_q\) with the output from the VQA model. For instance, a ReLU instead of a sigmoid gets 40.02% (compared to 47.11% with our approach using the same baseline architecture). Other classical fusions such as an element-wise sum lead to more significant performance drop than what was previously reported with ReLU. Upon acceptance, we will add a detailed discussion about these fusions in the final paper.

Answers to R4:

- **Q1 Visual comparison to [25]:** We will add to Figure 2 an "apples-to-apples" comparison to [25] as depicted in the figure of this rebuttal. Similarly to the "gradient negation" illustration, we will improve Figure 2 to indicate when the backpropagation is not happening in \(c_q\). We will also clarify the comparison with [25], from line 113 to 122.

- **Q2 Clarification about \(c_q\) and \(c_q'\):** We will clarify that \(c_q\) receives gradients from \(L_{QM}\) and \(L_{QO}\). See the answer Q1 to R3 for further information about \(c_q\) and \(c_q'\).

- **Q3 Evaluation on VQA-CP v1 and detailed evaluation breakdown:** We ran new experiments on VQA-CP v1 and report state-of-the-art results regardless of the architecture trained with RUBi. Our approach consistently leads to significant gains over the classical learning strategy. We report improvements of +9.80 in overall accuracy with our baseline architecture, +10.46 with UpDn, +19.23 with SAN. We will add a new table of results on VQA-CP v1 similarly to Table 1. We will also include the accuracy for each answer types for the UpDn and SAN architectures in Table 2.

- **Q4 Discussion about [A,B,C] and prior approaches:** We will add [A,B,C] to the related works section to highlight the importance of biases reducing methods in the multimodal context. Finally, we will introduce [15,41,19,16] from Table 1 in the state-of-the-art comparison paragraph. Note that these previous approaches do not focus on biases reduction contrary to [25].