
We thank all the reviewers for their careful feedback and will revise our paper accordingly. We start with a re-1

sponse addressing one common point raised by Reviewer 1 and Reviewer 3 regarding how to handle the case where2 ∑n
i=1 p

∞
i bi 6= 0. This case can be handled by a shifting argument if Ā :=

∑n
i=1 p

∞
i Ai is invertible. Notice the iteration3

ξk+1 = (I+αA(zk))ξk+αb(zk) can be rewritten as ξk+1−ξ̃ = ξk−ξ̃+α
(
A(zk)(ξk − ξ̃) +A(zk)ξ̃ + b(zk)

)
for any4

ξ̃. Now we denote b̃i = Aiξ̃+bi and the above iteration just becomes ξk+1−ξ̃ = (I+αA(zk))(ξk−ξ̃)+αb̃(zk). When5

Ā is invertible, we can choose ξ̃ = −(
∑n

i=1 p
∞
i Ai)

−1(
∑n

i=1 p
∞
i bi) such that

∑n
i=1 p

∞
i b̃i =

∑n
i=1 p

∞
i (Aiξ̃+ bi) = 0.6

Now we can directly apply the theory in our paper to obtain analytical formulas for E(ξk− ξ̃) and E[(ξk− ξ̃)(ξk− ξ̃)T ],7

which eventually lead to formulas for Eξk and E[ξk(ξk)T ]. A key question is when Ā will be invertible. Typically8

this can be guaranteed by some rank conditions on the feature matrix Φ whose i-th row is equal to φ(i)T . For TD(0),9

Ā is Hurwitz (and hence invertible) when the discount factor is smaller than 1, p∞i is positive for all i, and Φ is full10

column rank. Such a fact is presented in the classic paper “An analysis of temporal-difference learning with function11

approximation" by Tsitsiklis and Van Roy. Similar facts can be found for other TD algorithms (e.g. see Assumption 212

and Appendix A in Ref [19] for DTD and ATD). The assumption that Φ is full column rank is standard and states that13

any redundant features have been removed. Reviewer 1 is correct in that a discount factor is needed. In our paper, the14

calculation of θ∗ for TD(0) already involved such a shifting argument, and the condition
∑n

i=1 p
∞
i bi = 0 is enforced15

for Equation (13) due to the fact that the projected Bellman equation and the equation
∑n

i=1 p
∞
i bi = 0 are equivalent16

for TD(0). Notice θ∗ only solves the projected Bellman equation and does not minimize the mean-square Bellman error.17

When Ā is singular, we can slightly modify the input terms in (14) and (20) and directly obtain analytical formulas for18

(qk, Qk). However, there is no convergence guarantee for this case. Now we address specific reviewer comments below.19

Response to Reviewer 1: In the above response, we have already discussed the validity of the assumption
∑n

i=1 p
∞
i bi =20

0 for TD algorithms and how to shift terms for the case where
∑n

i=1 p
∞
i bi 6= 0. Now we discuss how to ensure the21

assumption that Ā is Hurwitz. This is a standard assumption required even by the basic ODE approach which is used to22

prove asymptotic convergence. This assumption can be guaranteed by some rank conditions on the feature matrix Φ.23

For example, when Φ is full column rank, Ā is Hurwitz for Equation (13). A reference for this is the classic paper “An24

analysis of temporal-difference learning with function approximation" by Tsitsiklis and Van Roy. Similar conditions25

for other TD algorithms can be found in Refs [19, 25]. We emphasize that our approach does not require any extra26

assumptions compared with the existing approaches. Finally, the “-” sign in Line 213 is due to the Hurwtiz assumption.27

Response to Reviewer 3: We thank the reviewer for the constructive suggestions on how to improve the readability of28

the paper. We will revise the paper accordingly. Regarding the assumption Ep∞i bi = 0, please see our response at the29

beginning of this rebuttal. We also want to mention that one way of extending our approach for the infinite sample30

space is by using operator theory. In this case, we will have some infinite dimensional variants of (5) and (6). Now31

the iterations on qk and Qk are described by infinite dimensional linear operators instead of finite dimensional linear32

operators (which are just matrices). A rigorous treatment of such extensions requires heavy mathematical notation due33

to the use of spectrum theory of linear operators. We will outline such ideas (without giving details) in our revised draft.34

Response to Reviewer 4: We agree that the new insights on TD learning brought by our analysis should be made more35

transparent. We will focus more on TD learning and improve the clarity accordingly. We do think that the reviewer has36

misunderstood our paper regarding its interpretability, significance, and originality. We will revise to make the following37

clarifications. Regarding interpretability, our results are not more difficult to interpret than the mean square error38

bound in Ref [23]. The trace of the covariance matrix will immediately give us the mean square error. Consequently,39

by substituting the expressions of Qk into the equation in Line 141 of our paper, we will directly get exact formulas40

and related bounds for the mean square error at any step k. Regarding significance, our exact formulas do bring new41

insights compared with existing sample bounds. Ref [3] requires an extra projection step to handle the Markov noise,42

so now we mainly compare our results with Ref [23]. Firstly, based on Statement 2 of Theorem 2 in our paper, the43

covariance matrix (or the mean square error) has an exact limit. In contrast, Ref [23] only shows that the final mean44

square error is bounded above. Secondly, a fundamental question is how tight the bounds in Ref [23] are. Does there45

exist an ergodic Markov chain such that the resultant final mean square error actually scales on the order O(αm) for46

some constant m > 1? Our theory states that the answer to this question is no. Our exact formulas for the convergence47

rate and the final limits of (qk, Qk) can not only provide an upper bound for the mean square error, but also directly48

lead to lower bounds. This justifies the tightness of the upper bounds in Ref [23]. Thirdly, for large α region, our49

theory states that the mixing rate of the underlying Markov chain zk poses a fundamental limitation for the convergence50

rate of TD learning. Statement 3 in Theorem 2 of our paper exactly characterizes this effect, and we provided further51

discussions in the last paragraph of our main paper. Such a fact is not explained by the theory in Ref [23] which focuses52

on small α region. Our theory sheds new light on how to choose large α at the early phase of TD learning. Regarding53

originality, our paper is the first that uses MJLS theory to analyze learning algorithms. Although Ref [15] presents a54

jump system formulation for stochastic optimization in supervised learning, the noise model there is IID and MJLS55

theory is not used there. Our paper is the first one that really bridges “Markov” jump linear system theory with learning.56


