
We thank the reviewers for their careful reading of our manuscript and their many insightful comments and suggestions towards1

improving our paper. Below we provide a single response to all the comments of the reviewers, which will be added to the paper.2

Motivation: The main motivation of this work is to propose the first XNOR-LSTM model where all the recurrent multiplications3

in both the gate and the state computations are performed using XNOR operations. Note that the existing quantization methods (i.e.,4

[18-19] and [26]) only focused on quantization of the gate computations while retaining the state computations in full-precision (FP).5

Originality: To obtain an XNOR-LSTM model, we use stochastic computing in a substantially different way from the standard6

stochastic computing (SC). Let us consider the vector-matrix multiplication of the gate computation as7

[
h11 h12 . . . h1dh

]
×


w11 w12 . . . w1dh

w21 w22 . . . w2dh
...

...
...

...
wdh1 wdh2 . . . wdhdh

 M =


h11 � w11 h11 � w12 . . . h11 � w1dh

h12 � w21 h12 � w22 . . . h12 � w2dh
...

...
...

...
hdh1 � wdh1 hdh1 � wdh2 . . . hdh1 � wdhdh

 .8

In non-stochastic computing method, we simply perform the element-wise multiplication between the vector h and each column9

of the matrix W to obtain the matrix M. Then, the accumulation over each column of the matrix M gives us the result of the10

vector-matrix multiplication. This process is performed using a multiply-accumulate (MAC) unit on CPUs, GPUs and specialized11

hardware. Having dh parallel MAC units, the vector-matrix multiplication takes dh clock cycles where dh denotes the number of12

rows and columns of the square weight matrix W. In the standard SC, a binary stochastic stream of size l is generated for each13

element of both the vector h and the matrix W, introducing an additional dimension of size l to them and an overhead latency of l14

clock cycles. For example, the standard stochastic version of the vector h is a matrix of size dh × l. Therefore, even though the15

standard SC allows to perform the vector-matrix multiplication using XNOR operations, it suffers from the long computation time16

overhead (see [20] and [28]). In our work, however, we took substantially a different approach. The main idea was started with this17

question: Can we treat the row of h, each column of W and consequently each column of M as stochastic streams of length l = dh if18

all the elements were binary? In this way, we do not generate any stochastic stream and we only treat each column of the M as19

a stochastic stream. Compared to the non-stochastic computation, we only perform the element-wise multiplication without any20

accumulation over the columns of M, allowing us to perform the state computations using stochastic logic units (i.e., in binary).21

Note that since there is always a scaling factor α in the binarization process and bias, we tweak our representation from binary SC to22

integral SC. We then proposed an integral SC tanh function that takes each column of the matrix M and returns a binary stochastic23

stream of the same length, approximating the non-linear functions used in LSTMs. Now, we have the gate values (i.e., f , i, o and24

g) represented as binary stochastic stream, allowing us to replace the multiplications in Eq. (2) with XNOR operations. When the25

state computations are done, we perform accumulation over the stochastic streams to obtain real values of the next state vector h. In26

fact, compared to the conventional binarized LSTM models (e.g., [26]) as shown in Figure (a) and (b), the accumulator unit in the27

gate computations of the conventional method is shifted to the end of state computations in our stochastic computing method (see28

Figure (c) and (d)). Note that the length of all stochastic streams (i.e., the parameter l) in our proposed method is equal to the29

size of LSTMs which is a design parameter and denoted as dh in the paper. To binarize the weight matrix W and the hidden state30

vector h, we leveraged the non-SC techniques introduced in [17] and [20] as described in Section 4.1. Note that sampling from the31

Bernoulli distribution in Section 4.1 only happens during the training phase to obtain binarized weights. Once the training is finished,32

deterministic binary values are stored for inference and we treat these deterministic binary values as stochastic streams in our work.33

Therefore, both weights and hidden state values are stored as deterministic binary values, reducing the memory footprint by a factor34

of 32× compared to FP. Moreover, the number of I/O and memory elements are the same as of conventional quantization methods35

since we only viewed the binarized weights and hidden states as stochastic streams.36

Implementation Cost: In the comparison section, we only compared the cost of our method in terms of XNOR operations since our37

main focus was to replace the costly multipliers with simple XNOR gates while the rest of computing elements (i.e., the adders38

and look-up tables) almost remains the same (see Figure (a,b,c,d)). Note that since SNG and ISNG can be easily implemented39

with magnetic tunnel junction (MTJ) devices which come almost at no cost compared to CMOS technologies, we excluded them40

from the implementation cost. However, based on the reviewers’ comment, we have implemented both non-stochastic binarized41

method (e.g., [26]) and our proposed method on a Xilinx Virtex-7 FPGA device where each architecture contains 300 neurons. The42

implementation of our proposed method requires 66K FPGA slices while yielding the throughput of 3.2 TOPS @ 934 MHz whereas43

the implementation of the non-stochastic binarized method requires 1.1M FPGA slices while yielding the throughput of 1.8 TOPS @44

515 MHz. Therefore, our proposed method outperforms its binarized counterpart by factors of 16.7× and 1.8× in terms of area and45

throughput, respectively, while considering all the required logic such as SNG, ISNG and look-up tables. Note that the number46

of occupied slices denotes the area size of the implemented design. Also, the proposed implementation runs at a higher frequency47

since its critical path is shorter than the conventional method due to the simpler hardware of XNOR gates vs multipliers.48

WikiText-2: Based on the reviewer’s comment, we have performed our method on WikiText-2 dataset which contains 33K vocabulary49

and is 3× larger than PTB. We obtained PPW values of 105.5, 107.3 and 109.4 for FP baseline, our ELSTM model and our XNOR50

model on a hidden size of 512 (i.e., dh = 512), respectively. The obtained results are consistent with the results obtained for PTB.51

Figure 3: To obtain the results in Figure 3, we measured the output of a single neuron for 12K input samples taken from the test set52

of PTB when performing CLLM.53

Significance: In this work, we presented a stochastic computing method that enables us to perform all the recurrent multiplications54

using XNOR operations. We believe that the proposed technique can be introduced to NeurIPS audiences with a successful55

application to quantization of LSTMs which is of a paramount importance when designing dedicated hardware. We also agree with56

the reviewer’s comment that the proposed stochastic method is a general approach and can be used in other applications, making it57

even more interesting to NeurIPS audiences. Moreover, we believe that this work will have a huge impact on the SC community as58

this is the first successful application of SC where using SC preserves the latency intact as apposed to the standard SC that incurs a59

long latency when comparing with the non-stochastic implementations.60
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(c) Our Stochastic Gate Computations
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(d) Our Stochastic State Computations


