
We thank the reviewers for their insightful comments and suggestions. We respond to the major concerns below and1

will incorporate all comments in the next revision.2

Summary of contributions We presented a novel theoretical and empirical study of the gradient dynamics of overpa-3

rameterized shallow ReLU networks trained with a least-squares loss. Our results are valid both in the finite and infinite4

width functional settings. We distinguish two extremal regimes in terms of generalization behavior: “adaptive” and5

“kernel”. The effect of each regime can be quantified in terms of a conserved quantity which depends on the initialization6

and on the scaling as the number of neurons grows large. In the kernel regime, the training problem converges to a7

kernel regression over a Sobolev spaceH2,2 as the number of neurons approaches infinity. Furthermore, in 1D, under8

mild technical assumptions, the kernel case reduces to cubic spline interpolation. In the mean-field limit, the adaptive9

regime with regularization converges to regression inH1,2, yielding linear splines with knots at the samples. For a finite10

number of neurons, our presentation of the adaptive regime is qualitative. We note that dynamics are fully determined11

by the residuals and the velocity field induced by gradient flow always pushes neurons towards the samples. For finite12

neurons, we observe solutions which adapt to the input data with knots converging at samples.13

Analysis of the adaptive regime (R2, R3) Our results on the adaptive regime reinterpret those appearing in [Maennel14

et al.] and [Savarese et al.] in the framework of mean-field analysis. The functional representation in terms of linear15

splines is established in the limit of infinite width (by combining [Saverese et al.] with [Chizat and Bach NeurIPS’18])16

under appropriate initial conditions and using TV regularisation. Our analysis in the adaptive regime for finite neurons17

is thus qualititative, but we believe it clarifies the role of initialization and parametrization. Rigorously quantifying the18

effect of having a finite number of neurons is an important next step, as is the extension to other neural architectures.19

We highlight however that our main technical contribution in this work is to rigorously establish the implicit bias in20

the kernel regime in terms of cubic splines, for generic parameter initializations. We therefore provide one of the first21

instances of an explicit distinction between the “adaptive” and the “kernel” regimes in terms of generalization: formally,22

we can show that kernel training converges to a kernel regression inH2,2 and, following [Chizat and Bach NeurIPS’18],23

that adaptive training in the mean-field limit converges to a regularised regression in a Sobolev spaceH1,2. If the paper24

is accepted, we will emphasize these technical contributions.25

Insights into higher dimensional inputs (R1) The statements and formulation in the paper generalize to higher26

dimensional inputs, however they do not paint a complete picture of the dynamics in this setting. For higher dimensional27

full parameters (a ∈ Rm×p, b ∈ Rm, c ∈ Rm) representing fz : Rp → R, the associated reduced parameters can be28

viewed as spherical coordinates identifying each neuron with a unit-norm vector ||d(θi)|| = 1 in Rp+1 and a radius29

ri = ci||(ai, bi)||2.30

In higher dimensions, the samples correspond to hyperplanes in phase space, and the possible configurations of attractors31

and repulsors become more complex. For example, when reduced neurons lie on one of the attractor hyperplanes,32

they follow dynamics in the lower dimensional subspace. The difficulty with the analysis in higher dimensions is33

that it involves the combinatorics of arrangements of hyperplanes corresponding to the sample points. We leave full34

categorization of these dynamics to future work, however we were able to verify experimentally that the dynamics in35

higher dimensions are qualitatively very similar to the 1D case, leading to concentration of neurons in the adaptive36

regime and smooth interpolants in the kernel regime. If the paper is accepted, we will include these experimental results.37

Definition of linear splines (R2, R3) We will give a formal definition of adaptive linear splines in the next revision of38

the paper: A linear spline is a piecewise linear function ϕ : R→ R whose knots ei ∈ R, i = 1 . . .m are the boundaries39

between pieces. We say that the spline is adaptive if the knots are also variable, i.e., if the function can be written40

as ϕ(x′, e1, . . . , em) : R × Rm → R. Alternatively, we can view adaptive linear splines in the funtional setting as41

functions ϕ : R→ R which interpolate the data points and minimize ‖ϕ‖H1,2 :=
∫
|ϕ′′(u)|du.42

Kernel learning for polynomially wide networks (R1) We were not aware of these results for polynomially wide43

networks, and will cite them in revised version of the paper. These, in fact, seem complementary to our results which44

demonstrate that for increasing width, the dynamics rapidly approach the kernel regime. In the revision, we will include45

an experiment demonstrating results for varying finite widths.46

Missing citations (R3) The missing citations pointed out by the reviewer are relevant and will be addressed in the47

next revision. In particular we believe our work is complementary to “A Convergence Theory for Deep Learning via48

Over-Parameterization” since we can quantify for both a finite and infinite number of neurons how much the dynamics49

behave like the kernel regime versus the adaptive regime by considering δ and m in Equation (21).50

Presentation of the results (R3) We have prepared a revised version of the paper where our results are presented51

more rigorously. In particular, we have improved Proposition 4 and formalized our discussion relating the RKHS52

norm with linearized curvature. In the adaptive setting, in addition to the infinte width analysis, we have clarified the53

qualitative description of the dynamics with finite neurons and added experiments illustrating the role of attractive54

samples throughout the training process (in 1D and in higher dimensions).55


