
Author Response to Reviews on “Efficient Approximation of Deep ReLU Networks”1

We appreciate all reviewers’ valuable comments. Here are our response to the major questions raised by the reviewers.2

To Reviewer #1:3

Q: Line 174, regarding the approximation of f by polynomials and construction of φ.4

A: We construct φi’s as linear transformations (Line 222) so it can be realized by a simple linear network. To5

approximate f , we first decompose f =
∑CM
i=1 fi as in Line 248. Our Taylor approximation sub-network approximates6

each fi in two components: the first one realizes the linear projection φi by a linear network and the second one7

approximates fi ◦ φ−1i in the neighborhood Ui by a ReLU network (Theorem 3). We will clarify the realization of φi’s8

in the next version.9

To Reviewer #2:10

Q: Step 3: there is an ambiguity in determining the chart to which a point belongs to, how this is solved?11

A: We allow a point x to belong to multiple charts, and the chart determination sub-network determines all the proper12

charts that x belongs to (Line 231). Specifically, the Ui’s form an open cover ofM (Line 216). Thus, a given input x can13

belong to multiple Ui’s. For the approximation of f , we associate each Ui with a weight ρi(x) from a partition of unity14

satisfying
∑
i ρi(x) = 1 for all x ∈M. Then our Taylor approximation sub-network approximates fi(x) = ρi(x)f(x)15

(Line 248). Consequently, the sum of all the outputs from the pairing sub-network (products of the indicator function of16

Ui and the corresponding Taylor approximation for fi(x), Line 280) approximates f(x) =
∑CM
i=1 fi(x).17

Q: Taylor approximation has local error guarantees in general, in contrast to the L∞ approximation used in this paper.18

A: While Taylor approximation yields a local error guarantee in each Ui, our L∞ error bound holds uniformly for19

x ∈ M. A uniform upper bound of all local errors gives rise to the L∞ error bound (Theorem 4). In this paper, we20

uniformly bound all local errors and therefore the result is given in the L∞ error.21

Q: Information theoretic bounds - can the authors elaborate? Improve section 4, Ideally.22

A: We show our obtained network size matches the lower bound up to log factors (Lines 191 - 193). We will rephrase23

“information-theoretic bound” as “the lower bound in Theorem 2”. We will elaborate on this part in the revision.24

We will also improve the technical Section 4 by including more high-level ideas and some graphical illustrations.25

To Reviewer #3:26

Q: The authors show no experimental results; instead they reference other networks (e.g., VGG, Alexnet, etc.).27

A: There have been empirical evidences (VGG, Alexnet, etc.) revealing a huge gap between the network size used28

in practice and the one predicted by existing theories (Line 52). Therefore, we believe it is not necessary to provide29

our own experimental results. Our theoretical results bridge this gap by taking low dimensional data structures into30

consideration, and establish efficient approximation theories for ReLU networks.31

Q: Line 14, you say you implement a sub-network but there are no experimental results.32

A: “Implementation” here means “analytical construction”, which is a standard notion in approximation theory literature.33

We will use “construct” in the next version to avoid confusion.34

Q: Line 48, it is not intuitive what it scales to, please consider rewriting it.35

A: We will rephrase it as “To achieve an ε uniform approximation error, the number of neurons scales as ε−256×256×336

([Barron, 1993, Universal approximation bounds]). Setting ε = 0.1 gives rise to 10256×256×3 neurons.” in the revision.37

Q: Line 145 (definition 6), to cite https://arxiv.org/pdf/1705.04565.pdf, and comments on the reach.38

A: We will add more citations in the next version. Our definition on the reach (Definition 6) is consistent with that in39

[arXiv:1705.04565]: The set C(M) (Line 145) contains all points having two closest points inM. Reach is defined40

as the minimum distance betweenM and C(M). The reach ofM = {(x, x) : x ∈ R+} ∪ {(0, x) : x ∈ R+} is 0,41

however, this is not a smooth manifold. Our paper considers Riemannian manifold (Line 122) and is therefore smooth.42

It is generally true that a smooth manifold with a small reach needs a large number of charts (open balls in Line 216).43

Q: Line 159 the constant B, and Line 160 the assumption on reach.44

A: We will rephrase Line 159 to “There exists B > 0 such that, for any x ∈M, we have |xi| ≤ B for i = 1, . . . , D.”45

Assumption 2 says thatM has a positive reach. We will rephrase Assumption 2 to “The reach ofM is τ > 0.”46

Q: Line 177, it is not clear at all if it is possible to partition a manifold with open sets.47

A: We assume the manifoldM is compact (Assumption 1, Line 158). Hence, the existence of a finite open cover is48

guaranteed by Heine-Borel theorem (See Wikipedia and Folland, Real Analysis, 1999).49

Q: Line 272, is each term in the Taylor expansion a different layer of the network?50

A: As shown in the proof of Theorem 3 (Lines 499 - 504), each term f̃m,n in the Taylor expansion is approximated by a51

ReLU network of depth at most c1 log 1
δ . There are totally dn(N + 1)d terms in the Taylor expansion (N is chosen52

as in Line 505). Therefore, the number of terms in the Taylor expansion essentially indicates the width of our Taylor53

approximation sub-network.54


