Author Response to Reviews on "Efficient Approximation of Deep ReLU Networks" 1

We appreciate all reviewers' valuable comments. Here are our response to the major questions raised by the reviewers. 2

- To Reviewer #1: 3
- **Q**: Line 174, regarding the approximation of f by polynomials and construction of ϕ . 4
- A: We construct ϕ_i 's as linear transformations (Line 222) so it can be realized by a simple linear network. To 5
- 6
- approximate f, we first decompose $f = \sum_{i=1}^{C_{\mathcal{M}}} f_i$ as in Line 248. Our Taylor approximation sub-network approximates each f_i in two components: the first one realizes the linear projection ϕ_i by a linear network and the second one approximates $f_i \circ \phi_i^{-1}$ in the neighborhood U_i by a ReLU network (Theorem 3). We will clarify the realization of ϕ_i 's 7
- 8
- in the next version. 9

To Reviewer #2: 10

- **Q**: Step 3: there is an ambiguity in determining the chart to which a point belongs to, how this is solved? 11
- A: We allow a point x to belong to multiple charts, and the chart determination sub-network determines all the proper 12
- charts that x belongs to (Line 231). Specifically, the U_i 's form an open cover of \mathcal{M} (Line 216). Thus, a given input x can 13
- belong to multiple U_i 's. For the approximation of f, we associate each U_i with a weight $\rho_i(\mathbf{x})$ from a partition of unity 14
- satisfying $\sum_{i} \rho_i(\mathbf{x}) = 1$ for all $\mathbf{x} \in \mathcal{M}$. Then our Taylor approximation sub-network approximates $f_i(\mathbf{x}) = \rho_i(\mathbf{x})f(\mathbf{x})$ 15
- (Line 248). Consequently, the sum of all the outputs from the pairing sub-network (products of the indicator function of 16
- U_i and the corresponding Taylor approximation for $f_i(\mathbf{x})$, Line 280) approximates $f(\mathbf{x}) = \sum_{i=1}^{C_M} f_i(\mathbf{x})$. 17
- Q: Taylor approximation has local error guarantees in general, in contrast to the L_{∞} approximation used in this paper. 18
- A: While Taylor approximation yields a local error guarantee in each U_i , our L_{∞} error bound holds uniformly for 19
- $\mathbf{x} \in \mathcal{M}$. A uniform upper bound of all local errors gives rise to the L_{∞} error bound (Theorem 4). In this paper, we 20
- uniformly bound all local errors and therefore the result is given in the L_{∞} error. 21
- **Q**: Information theoretic bounds can the authors elaborate? Improve section 4, Ideally. 22
- A: We show our obtained network size matches the lower bound up to log factors (Lines 191 193). We will rephrase 23
- "information-theoretic bound" as "the lower bound in Theorem 2". We will elaborate on this part in the revision. 24
- We will also improve the technical Section 4 by including more high-level ideas and some graphical illustrations. 25

To Reviewer #3: 26

- **Q**: The authors show no experimental results; instead they reference other networks (e.g., VGG, Alexnet, etc.). 27
- A: There have been empirical evidences (VGG, Alexnet, etc.) revealing a huge gap between the network size used 28
- in practice and the one predicted by existing theories (Line 52). Therefore, we believe it is not necessary to provide 29
- our own experimental results. Our theoretical results bridge this gap by taking low dimensional data structures into 30
- consideration, and establish efficient approximation theories for ReLU networks. 31
- **Q**: Line 14, you say you implement a sub-network but there are no experimental results. 32
- A: "Implementation" here means "analytical construction", which is a standard notion in approximation theory literature. 33
- We will use "construct" in the next version to avoid confusion. 34
- **Q**: Line 48, it is not intuitive what it scales to, please consider rewriting it. 35
- A: We will rephrase it as "To achieve an ϵ uniform approximation error, the number of neurons scales as $\epsilon^{-256\times 256\times 3}$ 36
- ([Barron, 1993, Universal approximation bounds]). Setting $\epsilon = 0.1$ gives rise to $10^{256 \times 256 \times 3}$ neurons." in the revision. 37
- Q: Line 145 (definition 6), to cite https://arxiv.org/pdf/1705.04565.pdf, and comments on the reach. 38
- A: We will add more citations in the next version. Our definition on the reach (Definition 6) is consistent with that in 39
- [arXiv:1705.04565]: The set $\mathcal{C}(\mathcal{M})$ (Line 145) contains all points having two closest points in \mathcal{M} . Reach is defined 40
- as the minimum distance between \mathcal{M} and $\mathcal{C}(\mathcal{M})$. The reach of $\mathcal{M} = \{(x, x) : x \in \mathbb{R}^+\} \cup \{(0, x) : x \in \mathbb{R}^+\}$ is 0, 41
- however, this is not a smooth manifold. Our paper considers Riemannian manifold (Line 122) and is therefore smooth. 42
- It is generally true that a smooth manifold with a small reach needs a large number of charts (open balls in Line 216). 43
- **Q**: Line 159 the constant *B*, and Line 160 the assumption on reach. 44
- A: We will rephrase Line 159 to "There exists B > 0 such that, for any $\mathbf{x} \in \mathcal{M}$, we have $|x_i| \leq B$ for $i = 1, \dots, D$." 45
- Assumption 2 says that \mathcal{M} has a positive reach. We will rephrase Assumption 2 to "The reach of \mathcal{M} is $\tau > 0$." 46
- **Q**: Line 177, it is not clear at all if it is possible to partition a manifold with open sets. 47
- A: We assume the manifold \mathcal{M} is compact (Assumption 1, Line 158). Hence, the existence of a finite open cover is 48
- guaranteed by Heine-Borel theorem (See Wikipedia and Folland, Real Analysis, 1999). 49
- **Q**: Line 272, is each term in the Taylor expansion a different layer of the network? 50
- A: As shown in the proof of Theorem 3 (Lines 499 504), each term $\tilde{f}_{m,n}$ in the Taylor expansion is approximated by a 51
- ReLU network of depth at most $c_1 \log \frac{1}{\delta}$. There are totally $d^n (N+1)^d$ terms in the Taylor expansion (N is chosen 52
- as in Line 505). Therefore, the number of terms in the Taylor expansion essentially indicates the width of our Taylor 53
- approximation sub-network. 54