¹ We thank all reviewers for their time and valuable comments.

2 Reviewer #1

³ We thank this reviewer for the positive feedback!

⁴ "The theoretical sample complexity is not significantly improved over previously-known methods."

⁵ The main contribution of our paper is to show that an existing and popular algorithm (i.e., group-sparse regularized

- 6 logistic regression) actually gives the state-of-the-art performance (in a setting where alternative algorithms are being
- 7 proposed). We view the sample complexity improvement over the dependence on k as a side benefit of our analysis.

"It would be interesting to see a more thorough empirical evaluation, to compare with the interaction screening method and in more settings."

¹⁰ The main contribution of our paper is theoretical. A thorough empirical evaluation of different algorithms is definitely

an interesting direction for future research, and we believe is beyond the scope of our current paper. Nevertheless, we

¹² did an experiment comparing the performance of the following algorithms: ℓ_1 -constrained logistic regression, RISE

(regularized interaction screening estimator) and its variant logRISE [LVMC18], and the Sparsitron algorithm [KM17].
Our graph has diamond shape (Figure 1 of our paper), 10 variables and edge weight 0.2. We focus on Ising models,

¹⁴ Our graph has diamond shape (Figure 1 of our paper), 10 variables and edge weight 0.2. We focus on Ising models, ¹⁵ because RISE and logRISE *cannot* be used to learn graphical models with general alphabet. With 1500 samples, the

because RISE and logRISE *cannot* be used to learn graphical models with general alphabet. With 1500 samples, th
fraction of successful runs out of 100 runs is: 92 (logistic regression), 90 (RISE), 93 (logRISE), and 53 (Sparsitron).

¹⁷ **"Extend the method to higher-order MRFs."** Intuitively, it should not be difficult to prove that ℓ_1 -constrained logistic ¹⁸ regression can recover the structure of binary *t*-wise MRFs. One can prove it by combining results from Section 7 ¹⁹ of [KM17] and the following fact: the Sparsitron algorithm can be viewed as an online mirror descent algorithm that ²⁰ approximately solves an ℓ_1 -constrained logistic regression. This observation is actually the starting point of our paper. ²¹ For higher-order MRFs with non-binary alphabet, we conjecture that similar result can be proved for group-sparse

regularized logistic regression. Extending the current proof/method to higher-order MRFs is definitely an interesting

23 direction for future research. We will include this discussion in our paper.

24 **Reviewer #2**

"The presentation is quite technical...the Ising case seems to be enough to introduce the main idea...but a lot of space is devoted to the generalization to larger alphabet..."

27 In this paper we consider the general alphabet setting for two reasons:

- This shows that our proof technique is actually quite general and can be easily extended to the setting with non-binary alphabet. In fact, there is a one-to-one correspondence between the lemmas used in learning Ising models (Lemma 8,
- 1, 5) and the non-binary graphical models (Lemma 11, 2, 6).
- For learning non-binary graphical models, we see a benefit of using the group-sparse (i.e., the $\ell_{2,1}$ -norm) constraint instead of the ℓ_1 -norm constraint used in [KM17]: the sample complexity improves from k^5 to k^4 . A more general
- statement holds (by following a proof similar to ours): for any $1 \le p \le 2$, the $\ell_{p,1}$ -constrained logistic regression
- gives a $k^{3+2/p}$ dependence. The case of p > 2 requires a proof different from ours and it is interesting to see if one
- can get a better dependence on k in that case.

³⁶ "Experiments are only presented for rather small examples (up to 14 variables, up to k = 6)."

The main contribution of our paper is to theoretically prove the state-of-the-art performance of an existing and popular algorithm (i.e., group-sparse regularized logistic regression), in a setting where alternative algorithms are being proposed.

- ³⁹ Large-scale empirical evaluation is an interesting direction, and we think is beyond the scope of our current paper.
- ⁴⁰ The biggest problem with large-scale simulation is that efficiently sampling from large graphical models is difficult.

In our experiments, the samples are generated as follows: 1) We first *exactly* compute the probability distribution

defined by a graphical model with n variables and alphabet size k; 2) We then sample from this probability distribution.

⁴³ Because the distribution contains k^n probabilities, the above sampling procedure is only possible for small n and k.

44 When n is large (e.g., $n \sim 100$), exactly computing the probability distribution is impossible, and Gibbs sampling needs

to be used. The mixing time for Gibbs sampling can be very large [BM09]. Because of this reason, we believe that

⁴⁶ large-scale empirical evaluation of different learning algorithms is itself a contribution to this area of research.

47 **Reviewer #3**: We thank this reviewer for all the positive comments!

48 **References**

- 49 [KM17] Klivans, Adam and Meka, Raghu. Learning graphical models using multiplicative weights. FOCS, 2017.
- ⁵⁰ [BM09] Montanari, Andrea and Bento, Jose. Which graphical models are difficult to learn? *NeurIPS*, 2009.
- 51 [LVMC18] Lokhov, A. Y. et al. Optimal structure and parameter learning of Ising models. *Science advances*, 2018.