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REVIEWER 2 Thank you for your encouraging comments.

REVIEWER 3 Thank you for your comments. In order to help clarify our contributions and or-
ganize them for readers, we provide the following table to summarize the differences between regrets.

Regret Non-convex Models | Concept Drift Update Rule
Standard Regret X X Tip1 = Ty — %Vft (x¢)
Static Local Regret (Hazan et al.) v X Tipr =Tt — & Z;T:)l Vfioi(z)
Dynamic Local Regret (Ours) v v Tepl =Tt — ;‘:01 a'Vv fr—i(Te—i)

REVIEWER 4 Thank you for your comments. First we provide a toy example and some additional theoretical
motivation for our regret in response to the following comment:

Without some formal notion or even toy scenario for concept drift, it’s not clear what theoretical basis there is to prefer
this notion of regret to other notions other than some vague heuristics.

Motivation via a Toy Example We demonstrate the motivation of our dynamic regret via a toy example where the
static local regret fails. Concept drift occurs when the optimal model at time ¢ may no longer be the optimal model
at time ¢ + 1. Consider an online learning problem with concept drift with 7' = 3 time periods and loss functions:
filz) = (z — 1)2, fa(z) = (z — 2)%, f3(x) = (z — 3). Obviously, the best possible sequence of parameters is
r1 = 1,20 = 2,23 = 3. Call this the oracle policy. Also consider a suboptimal sequence, where the model does not
react quickly enough to concept drift: 1 = 1,29 = 1.5, z3 = 2. Call this the stale policy. The values of the stale
policy were chosen to minimize Static Local Regret. Recall the formulation of static and dynamic local regrets:

2 2 2

HR3 (3) _ H Vfd(xs) + szg(fbs) + Vfl (1'3) + Vfg(l'g) ;I; Vfl (xz) + L(:El) (Hazan’s)
2 2 2
PRs(3) = H V f3(x3) + Vf23(3?2) + V fi(z1) ‘ n H V fa(z2) ;- V fi(z1) ' n H Vf13(3?1) (Ours)

Note that, for the local regrets, we use w = 3 and assume f;(z) = 0 for ¢ < 0. We also set & = 1 for our Dynamic
Local Regret but other values would not change the results for this example. The formulation of the Standard Regret
1S 7, fe(zs) — ming 7, f:(e). Although the oracle policy achieves globally minimal loss, Hazan et al.’s Static Local
Regret favors the stale policy. We can verify this by computing the loss and regret for these policies, as shown in the
table below.

—— 5GD online

SGD online with momentum = 0.5
—— SGD online with momentum = 0.9

—— SGD online with momentum = 0.99
—— PTS-SGD

Regret Oracle Policy | Stale Policy Decision
Cumulative Loss 0 5/4 Oracle policy is better
Standard Regret -2 -3/8 Oracle policy is better
Static Local Regret (Hazan etal.) | 40/9 4/9 Stale policy is better
Dynamic Local Regret (Ours) 0 10/9 Oracle policy is better
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Theoretical motivation via Calibration: A more formal motivation of our regret 16 10° 100
can be related to the concept of calibration [1l]. The comment on line 110 can be
rewritten as: If the updates {x1,-- -, xT} are well-calibrated, then perturbing x, by
any u cannot substantially reduce the cumulative loss. Hence, it can be said that the Figure 1: SGD online with
sequence {x1,---,z7} is asymptotically calibrated with respect to { f1,---, fr} if: momentum

T T
lim supp_, o, SUP|jy)j=1 Lo ft(zt)7§t11 Jelwetn) < Consequently, using the first

order Taylor series expansion, we can write the following equation that motivates the left hand side of the equation 3 in
the paper: lim supy_, . SUpjj, =1 — % (u, V fi(x¢)) < 0. Thus our regret ensures asymptotic calibration.

This analysis was dropped for simplicity, but thanks to the reviewer’s comments we will put this analysis back into the
paper.
Next we provide some additional discussion of momentum to address the following comment:

However, as the authors note, previous work has shown that PTS-SGD coincides with SGD with momentum as the
decay factor approaches 1, so it seems like a better empirical comparison might be with SGD with momentum.

We indeed ran experiments using SGD with momentum for various decay parameters and concluded that SGD with
momentum is not even as stable as SGD-online (standard SGD without momentum) as shown in Figure [T} Our
PTS-SGD is still more robust to the learning rate. On the other hand, we observed that SGD with momentum yields
better accuracy for offline learning (results are not shown here). We will add these results to the paper.
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