We thank all the reviewers for their comments and valuable feedback which will help improve the paper.

2 Reviewer 1

3 Explanation of the algorithm

- We thank the reviewer for pointing out the typos. We will definitely improve the writing of the pseudo code and the
- 5 prose in the final version. If the page limit becomes an issue, we will add a longer exposition in the appendix. We
- assure that we will address the reviewer's concerns in the final version and ensure that Section 4 and the pseudo code
- 7 are reader friendly.

8 Concrete instances of Corollary 1, comparison to Acharya et al., and other applications

- 9 We will add concrete instantiations of Corollary 1 in the appendix for well studied symmetric functions and compare
- them to previous works. For a comparison between our work and Acharya et al., observe that since we release the
- 11 entire histogram, our privacy mechanism can be used for many symmetric properties simultaneously, while Acharya
- et al.,'s work studies the problem for specific properties. Hence, our result for a specific symmetric property can be
- slightly worse. For example, consider entropy estimation. The main term in our privacy cost is $\tilde{\mathcal{O}}\left(\left(1/\alpha^2\epsilon\right)^{\frac{1}{1-2\beta}}\right)$ and
- Acharya et al's bound is $\mathcal{O}(1/(\alpha\epsilon)^{1+\beta})$. Thus for $\beta=0.1$, our dependence on ϵ and α is slightly worse. We agree
- with the reviewer that our work should also extend to other properties such distance to uniformity, which to the best of
- our knowledge has not been studied in the DP framework.

17 Doubly logarithmic dependence on k for entropy estimation

- We thank the reviewer for catching this. We agree with the reviewer that dependence on $f_{\rm max}$ introduces an additive
- doubly logarithmic dependence on the domain size for entropy. We will modify line 173 to read "Furthermore, the
- 20 increase is dependent on the maximum value of the function for distributions of interest and it does not explicitly depend
- on the support size".

22 Reviewer 2

23 Approximate vs pure DP

- 24 Since pure DP is strictly better than approximate DP, our algorithms also imply approximate DP guarantees. However,
- 25 previous and our lower bounds do not hold in the approximate DP setting and we plan to pursue this in future. We thank
- 26 the reviewer for raising this question.

27 Reviewer 3

28 We thank the reviewer for the stylistic comments and typos.

Comparison to Blocki et al.,'s (ϵ, δ) -DP result and other approaches

- 30 The algorithm we refer in "Pure vs approximate differential privacy" is due to Block et al., and as the reviewer stated it
- as an ℓ_1 error of $\mathcal{O}(\sqrt{n}/\epsilon + \log(1/\delta)/\epsilon)$. We improve on the dependence on ϵ compared to this work. Furthermore,
- our $(\epsilon, 0)$ -DP guarantee is stronger than the (ϵ, δ) -DP of Blocki. et al.
- 33 We will also discuss previous algorithms and explicitly state which parts of our algorithm are new. To answer the
- reviewer's question: To the best of our knowledge both (i) splitting r around \sqrt{n} and using prevalences in one regime
- and counts in another and (ii) the smoothing idea used to zero out the prevalence vector are new and have not been
- 36 explored before. Of the two (i) is crucial for the computational complexity of the algorithm and (ii) is crucial in
- improving the ϵ -dependence from $1/\epsilon$ to $1/\sqrt{\epsilon}$ in the high privacy regime ($\epsilon \leq 1$). There are few subtle differences
- 38 such as cumulative prevalences vs actual prevalences. We will explicitly highlight the above contributions in detail in
- 39 the final version.
- 40 Finally, we note that Blocki et al., proposed an algorithm based on exponential and approximately exponential
- 41 mechanisms on prevalences, whereas our algorithm is based on Laplace and Geometric mechanisms together with the
- splitting idea and smoothing methods described above. We will add the above discussion in detail in the paper. We
- 43 hope that the above discussion clarifies the relation to the Blocki, Datta, and Bonneau paper to our work.

Even split of ϵ between ϵ_1 , ϵ_2 , and ϵ_3

- There is no particular reason for ϵ_1 , ϵ_2 , and ϵ_3 to be equal and we chose those values for simplicity and easy readability.
- We will add a discussion in the appendix on better ways of splitting the privacy budget. For example, since ϵ_1 is
- just used to estimate n, analysis of the algorithm shows that ϵ_2, ϵ_3 affects utility more than ϵ_1 . Hence, we can set
- 48 $\epsilon_2 = \epsilon_3 = \epsilon(1 o(1))/2$ and $\epsilon_1 = o(\epsilon)$ to get better practical results.