R1. Thank you for appreciating the theoretical contribution and significance. Your main concern seems the performance 1 difference in our soft actor-critic (SAC) compared to the SAC from [20,21] on HalfCheetah. This was earlier noted by 2 other researchers who tried to reproduce SAC results, leading to a GitHub issue which has been resolved just recently 3 [Q. Vuong. Unable to reproduce result on HalfCheetah-v2. In GitHub rail-berkeley/softlearning Repository, Issue #75, 4 2019.]. One of the SAC authors of [21] was able to reproduce low SAC performance on HalfCheetah for a specific seed 5 setting confirming that the effect is of statistical nature only and scientifically valid. Details follow next. First note that 6 the original SAC paper [20] used Mujoco v1-environments, while we used the latest v2-versions. Since then, SAC 7 has been evaluated on v2 by the same authors as in [20]—see Figure 1 in [21]. While the performance of our SAC is 8 comparable with the SAC from [21] on Hopper-v2, Walker2d-v2, Ant-v2 and Humanoid-v2 after 500k steps, there is a 9 discrepancy on HalfCheetah-v2. Others obtained similar reproducing results leading to the aforementioned GitHub issue. 10 The first figure in the first comment of the GitHub issue reports similar HalfCheetah results as we do. One SAC-paper 11 author [21] was able to reproduce lower-performance results (see comment from May 19). The final conclusion was 12 that this is caused by the cheetah occasionally flipping over (see comment from May 20) for specific seed settings 13 apparently different from those used in [21]. The comment from June 24 resolves the issue: proper randomization of 14 both environment creation and action sampling seeds in OpenAI gym leads to low performance, whereas clamping 15 the action sampling seed to 0 yields high performance. On a minor note, the SAC results in [20,21] were obtained 16 by averaging over 5 seeds which is not enough in Mujoco-different pairs of 5 seeds can yield significantly different 17 results, see [43] slide 21. Therefore, we conducted experiments with 10 seeds. Hence, our evaluation is statistically 18 more sound compared to the SAC papers [20,21]. We hope this clarification addresses your main concern. 19 Improvements. 11) Eq. (7) pre-states our main theoretical result in advance, but the rest of Section 4 is required to 20

understand it—we clarified that. In short, under optimal V^* and q^* , the optimal policy π^* for the second line in Eq. (7) 21 is given by Eq. (9). Plugging π^* back into the second line of Eq. (7) (but without the max-operator and assuming 22 an optimal q^*) yields the third line. If q^* was replaced with a fixed q that does not depend on the next state s', then 23 cumulative KL regularization is recovered in which case the third line of Eq. (7) is a lower bound to the ordinary MDP 24 formulation without logarithmic penalty. But the lower-bound statement does not hold for empowerment regularization 25 because it adds intrinsic reward while KL regularization subtracts intrinsic reward on average. 12) You are right. Eq. (9) 26 can be re-formulated to yield a result similar to what you mentioned for empowerment regularization. 13) Figure 2 27 adopts the performance metric from [8]. We also report the plot you suggested with mean episodic reward curves in 28 Appendix Figure 3 for all environments (we can swap them). We adjusted the paper w.r.t. 11) - 13) accordingly. 29

R2. Thank you for valuing our theoretical contribution. Your main concern seems that we use a 1-step rather than a multi-step empowerment formulation. We need to stress that we optimize for *cumulative* and not *instantaneous* 1-step empowerment. Cumulative 1-step empowerment yields *non-myopic* agents and *has similar properties as multistep empowerment*. Note that in Figure 1 in the paper, γ was 0.6 which might evoke the impression of a myopic policy in the second plot. Below is a more illuminating example with $\gamma = 0.95$ (also with $\alpha = 0$ and $\beta = 1$).

Not requiring a multi-step policy is actually a strength because a multi-step policy executes a sequence of actions (and cannot "correct" for an action when observing another state in the meanwhile). We hope this addresses your main concern and we would be happy if you shared your enthusiasm with the other reviewers (we added the new example to the paper).

Improvements. Multi-Task) We agree, empowerment could be particularly beneficial for multi-task (but this is outside the scope of the rebuttal). **Drawbacks**) We have not investigated model biases. However, empowerment specifies a particular optimization objective, and one

can design reward signals that conflict with empowerment signals (e.g. negative empowerment). This could explain 42 43 hindered performance—we clarified that. Code) We triggered the internal process for code release (in a non-academic institution, there are intellectual property regulations). Run Time / Complexity) Theorem 2 says for how many 44 iterations i the value iteration needs to run to guarantee optimal values with epsilon-precision ($i > \log_{\gamma}(\epsilon(1-\gamma)/const)$). 45 Proposition 3 says that one value iteration step (for a particular state s) requires an iterative Blahut-Arimoto scheme 46 that converges at a rate of O(1/j) where j is the number of "inner" iterations. Similarly to the "outer" value iteration 47 scheme, it can be determined how many inner iterations j are required to obtain epsilon-precision, i.e. with the proof 48 of Appendix Lemma 5: $j \ge (\beta/\epsilon) const$. The complexity of the inner Blahut-Arimoto scheme for a single state s is 49 O(j|S||A|)—see Eqs. (13,14). The overall complexity is $O(ij|S|^2|A|)$. We adjusted the paper accordingly. 50

R3. Thank you for your feedback. You seem concerned about the Mujoco results. While we consider the generalized MDP formulation plus theory as our main contribution, the experiments show for the first time that empowerment can improve RL in high-dimensional tasks. As you mentioned, this has been a long-standing research question not addressed before. *Empowerment leads to significant improvements in 6 tasks (most notably Ant which is amongst the most difficult tasks), and in the other 2 still to initial improvements* compared to the state-of-the-art SAC—see Figure 2.

⁵⁶ While we agree that more environments are always better, we already provide a suite of 8 different environments where

57 others usually report less, e.g. 6 in SAC [20]. We adjusted the paper to address your minor details.