
We would like to thank the reviewers for their positive and constructive comments. We address the major points below.1

Cost function Reviewers asked to clarify the cost function we used, and whether/how changing the cost function2

would alter the results. We agree that the cost function should be clearly specified in the text and we will do so in3

the final version. Here, we did not include an explicit noise model; our result can be derived by either minimizing4

the reconstruction error (under mean-squared error) or by maximizing information, which restricted to second-order5

statistics equates to maximizing explained variance. We agree with the reviewers that it would be very interesting to6

explore alternative cost functions. We chose our approach for the following reasons:7

1. We wanted to demonstrate that even the simplest and most commonly employed model yields an interesting8

and (to us) surprising relationship between the resulting allocation and the bottleneck width. The presence of9

this relationship is therefore not dependent on noise or nonlinearities.10

2. Often, more complex models include a projection to PC space as the first step, and thereby yield the same11

allocation described in the paper. For example, this applies to a common variant of ICA (fastica) in the12

undercomplete case, which we have confirmed numerically. Similarly, the approach taken by Doi & Lewicki13

(2014) that includes an explicit noise model contains the same projection. Of course, alternative formulations14

of the noise model or cost function that would affect allocation directly are conceivable.15

3. Finally, resource allocation can be solved analytically under our cost function. This paves the way for future16

analyses of more complex models, for example introducing nonlinearities by means of kernel PCA.17

Generalization of results First, regions of different sizes can be incorporated by adjusting the model’s length scale,18

a. Second, the solution can be extended to n > 2 regions: eigenvalues are calculated for each region independently,19

and can be sorted (and interlace) irrespective of the number of regions. Third, the 2D case can also be solved by a20

straightforward adaptation of the Laplacian eigenvalue problem. We will clarify these points in the final version. Finally,21

we have confirmed numerically that the block-matrix approach provides a valid approximation (see paper appendix).22
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Figure 1: Resource allocation in the optic nerve
calculated from natural image statistics.

Implications for neuroscience Several comments asked about the23

match between our analysis of natural image statistics and neuro-24

physiological data. We initially included this example simply to25

demonstrate the importance of the covariance function on resource26

allocation. The original analysis was based on equal region sizes and27

therefore precluded a direct comparison with data from the visual28

literature, as the fovea is much smaller than the retinal periphery.29

We have now re-expressed our results to take this size difference30

into account. Importantly, the data set and methods are the same as31

before, the only difference being the number of inputs for each of the32

regions to account for the difference in size. We took the central 533

degrees of the retina as the fovea, yielding a size ratio of 1:166. We34

assumed 260,000 cones in the fovea, and the rest in the periphery,35

containing around 5,940,000 cones (values extrapolated from Curcio,36

1990; Wells-Gray et al., 2016).37

The resulting allocation boundary is shown in Fig. 1. Importantly, if38

we use this result to calculate the implied ratio between cones and39

(midget) retinal ganglion cells (RGCs) in the optic nerve, we find a40

predicted ratio for the fovea of just over 1, indicating that each RGC41

should receive input from only 1 to 2 cones; the same ratio has been well established experimentally. For the periphery,42

we predict on average inputs from 10-20 cones onto a single RGC, again in agreement with the literature.43

As the density of cones varies smoothly across the retina, future work should build on these results to explore the44

principles of RGC allocation on a finer scale; however, such more complex analysis is beyond the scope of the current45

paper.46

Implications for machine learning Bottlenecks are common in ML models to help with generalization and have47

recently attracted renewed interest in the field of deep neural networks. Non-uniform inputs have not been studied in48

detail, however appear useful for robotics applications, where power and size constraints are important. In both cases,49

our work suggests that the size of the bottleneck is critically important in shaping the resulting representations.50


