
We will fix all minor comments and typos without explicitly addressing them in the rebuttal.1

Response to Reviewer 1:2

Practical Impact: Our primary aim in this work is indeed theoretical. There has been substantial interest in the3

theoretical understanding of adversarial robustness recently. Our work highlights the deficiencies in some of these4

theoretical formulations (see also response to Reviewer 2 below), which we hope will lead to better theoretical models,5

which in turn may lead to practical advances. Regarding an algorithm for monotone conjunctions in Theorem 10’s6

setting, the standard PAC learning algorithm for conjunctions suffices. An outline of this already appears in the7

Appendix, but we will add a reference to it in the main paper.8

PAC Terminology: We have assumed that readers will be familiar with standard terminology from PAC learning. Given9

that many NeurIPS attendees may be unfamiliar with this terminology, we will add an appendix giving definitions that10

we require and point readers to standard texts for further details.11

Non-trivial Class: The definition of non-trivial class appears just before the statement of Theorem 5 (in lines 182-183).12

Undefined Algorithm: The algorithm for exact learning monotone conjunctions using membership queries would be13

considered folklore in the computational learning theory world; the key idea is that starting from the instance where all14

bits are 1 (which is always a positive example), we can test whether each variable is in the target conjunction by setting15

the corresponding bit to 0 and requesting the label. We will add this in the aforementioned new appendix.16

Finite Concept Classes: Since (Thm. 11/Prop. 12) are primarily concerned with showing hardness of robust learning,17

we don’t think finite concept classes is a restriction. Please also see lines 70-90 for discussion regarding concept classes18

defined over Rn.19

Experiments: We do not believe that artificial experiments will add to the value of the paper; that’s not the main point20

of the submission.21

Comparison to Prior Work/Contributions: We will expand on the section in the paper, but we also refer to the review by22

R3, which we believe very clearly summarizes our contributions.23

Response to Reviewer 2: Right Model: We obviously disagree with the reviewer about this being a bad paper, but to a24

great extent do agree with the reviewer about these being unsuitable models or inadequate definitions for adversarial25

robustness. The point is that we weren’t the inventors of these definitions (cf. [4, 5, 7, 8] for theory papers and others26

more applied papers [A, B, C]). Our aim was precisely to show that once these definitions are accepted, even the most27

elementary classes prove to be hard to robustly learn—and that proving computational hardness is much easier and28

straightforward compared to the proofs that appeared in prior work.29

Having criticized the definitions, we should acknowledge the contributions of prior work. Indeed, our initial aim was to30

show positive results for at least some non-trivial classes under these definitions. It is clear that these definitions are in31

many ways natural and reasonable, but when one looks at them under the lens of computational learning theory their32

inadequacies surface immediately. We hope our work will highlight these issues and lead to future work (including33

hopefully by us) that comes up with definitions that still (somewhat) retain the simplicity and naturalness of the current34

definitions, while allowing one to separate non-trivial classes that are easy to robustly learn from those that are not!35

Computability/Halting Problem: There is no connection to the halting problem, which is only one of the reasons why36

uncomputability arises; there can be several others. The difficulty in this case is enumeration over (uncountably) infinite37

sets. How would one compute the function, 1(∃y ∈ Bρ(x).h(y) 6= c(y)) in finite time even if one had black-box access38

to evaluate h and c (the latter is not possible without membership queries)? Even under the assumption that the Turing39

machine has the power to perform arithmetic over reals in unit time, the existential quantifier makes evaluating the40

robust loss impossible! Even if the instance space is Qn, the decision problem for detecting an adversarial example41

would be recursively enumerable, but not recursive. This problem disappears for finite instance spaces, but even there it42

is not obvious how to evaluate this loss without membership queries. This is why one gets the separation for monotone43

conjunctions depending on whether or not the learning algorithm has access to membership queries. In the case of44

infinite instance spaces, we can’t see a way to avoid the enumeration question without a strong inductive bias on h and45

c; in that case, properties of these functions, e.g. Lipschitzness, could be used to compute the loss in finite time.46

Response to Reviewer 3:47

We thank the reviewer for the comments and will obviously fix the typos they observed.48
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