
We thank reviewers for the relevant comments. We first address general questions and then give brief individual answers.1

On the necessity of GRU-Bayes and link to filtering methods. GRU-ODE and GRU-Bayes have complementary2

roles and should be used together. GRU-ODE integrates the dynamics of the hidden process h(t) in time. It thus3

provides the future estimated distribution of the observations. It computes our belief about the unobserved future time4

series observations. Those projected distributions vary smoothly as they are driven by an ODE. But, as soon as any new5

observation is available, our belief about the state of the process should be updated instantaneously. GRU-Bayes is6

responsible for this and compares the prediction from GRU-ODE and the actual observation. This update necessarily7

has to be discrete to accommodate for the new information arriving in packets (or sporadically). See figures 1 and 28

for illustration of this dynamic. This also motivates why sporadic measurements cannot be fed directly to the ODE9

: observing a sample should make us update our belief immediately. A useful analogy is the Kalman filter, which10

consists in a prediction and an update phase. In prediction phase, it propagates in time the predictions about the11

distribution of the state (analog to GRU-ODE). In update phase, it computes a new estimate for the state probability12

distribution conditioned on the new information (analog to GRU-Bayes). Yet, in contrast to the (extended) Kalman13

filter, our approach is able to learn complex non-linear dynamics for the hidden process and is computationally cheaper.14

More related works context. Other recent works have previously investigated the relationship between deep neural15

nets and differential equations. They mainly focused on deriving better deep architectures motivated by the stability of16

the corresponding partial differential equations (Ruthotto and Haber, arXiv 2018; Chang et al., ICLR 2019). Despite17

their ODE motivation, those approaches aim at designing new discrete architectures and don’t explore neural networks18

parametrized ODEs as such.19

Point processes (Mei and Eisner, NeurIPS 2017; Gunawardana et al., NeurIPS 2011) are intrinsically continuous as20

they focus on time-to-event modelling. Continuous-time Bayesian networks (Nodelman et al., UAI 2002) address a21

related problem where they frame events as state transitions. In contrast, our work aims at modelling continuous-time22

real-valued measurements, not only events. Yet, our continuous modelling of the latent process h(t) allows to easily23

jointly model a continuous intensity function (e.g. by modulating the intensity function of a Poisson process with h(t)).24

This joint modeling of continuous measurements and events was left for future work.25

Reviewer 2. Some assumptions have to be made about the conditional distribution of the observations. However, this is26

not very restrictive as a broad range of distributions have a tractable KL (e.g. Poisson, Exponential, ...).27

The main difference with GRU-Discretized-Bayes resides in the continuity of the latent process (will be detailed in the28

Appendix). We then considered this experiment as a continuity ablation study. Note that the continuity prior can be29

tuned by rescaling time accordingly. Elongating time by a factor 2 would lead to a Lipschitz-4 prior.30

Unlike sporadic measurements, the continuous measurements can indeed be directly fed to the GRU-ODE as suggested31

at line 89 and would considerably improve the prediction of the model as vital signs are very strong predictors in critical32

care. In this work we didn’t include them (1) to compare equally with the other baselines which are not capable of33

handling continuous inputs, (2) we re-use the same variable subsets as used in (Che et al. Scientific Reports 2018). Still,34

we warmly welcome this suggestion from the reviewer as this would further highlight the capabilities of our model.35

For fair comparison, all compared models were made probabilistic if not already (i.e. they all output log-variance).36

Reviewer 4. We added the following (at l.264) : “We assessed the performance of the models by creating 5 different37

folds, each consisting of training (70%), validation (20%) and a left out test set (10%). Those folds are reused across38

compared architectures. For each fold, the models were trained with various hyper-parameters on the train set then39

evaluated on the validation set to select the best ones. We then retrain the model on the train data and assess performance40

on the test set. We do this 5 times and report the mean and stdev of our test set performances.” Test samples were never41

used in training nor in tuning hyper-parameters, but for performance reporting only. The same train, val and test indices42

were used to compare all models and we used the same number of hyper-parameters combinations for all methods.43

Minibatch is performed by jointly integrating all time series in the batch between unique observation times over the44

whole batch. At each unique time, we only update (with GRU-Bayes) the time series actually having an observation at45

that time and leave the other untouched. We then proceed with joint time integration until the next unique time.46

Reviewer 5. A basic MLP does not enjoy the properties stated in sections 2.2 and in first paragraph of section 2.3. Still47

we investigated an other ODE parametrization : GRU-minimal, as described in Appendix G.48

A important strength of our approach is to be able to predict future observations at any point in time. Yet it can also49

be easily used for time series classification or regression (e.g. using the last latent h(T ) to feed a classifier). If those50

labels are widely used in the literature, we are convinced vitals forecasting is just as important in medical practice as the51

health status of a patient is complex and cannot usually be fully captured by discrete labels.52


