
Thank you for all your comments and corrections; they will be incorporated into our revised version.1

All reviewers. The paper focuses on theoretical guarantees, however we agree providing more experiments can be2

helpful. We plan to add (a) An example using general retraction—to show the generality of our approach (see an3

illustration below); (b) to compare the algorithm’s rate on two manifolds with different curvature—to illustrate how4

curvature affects the rate empirically.5

Our existing experiments illustrate that the iterates escape from saddle points and converge fast to an approximate6

second order stationary point. Figure 1 in the paper shows that, after perturbation, the iterates escape the saddle point7

x0 and converges to x∗.8

Reviewer 1.9

1. The ML community has shown growing interest in manifold optimization and rates of escape from saddle points;10

papers on both non-convex optimization (e.g., Jin et al., 2017) and Riemannian optimization (e.g., Bécigneul & Ganea,11

2019) are published in top ML conferences.12

2. If we agree about the importance of Grassmannian and Stiefel manifolds, numerous other interesting manifolds also13

have closed-form exponential maps: the Minkowski space, the hyperbolic space, SE(n), SO(n)...(see, Miolane et al.14

(2018); Boumal et al. (2014) and their open-source packages and Bécigneul & Ganea (2019, Sec 5) for an example in15

NLP). Focusing on the Grassmanian and Stiefel manifolds would be too restrictive and would leave out all these other16

example applications.17

3. We stress that a major contribution is to derive convergence rate for the Riemannian gradient expressed in terms of18

the manifold curvature. As one may already see from the “proof strategy”, this is made possible by involved results19

in differential geometry which control the evolution of the exponential map in a curvature dependent manner (Rauch20

comparison theorem on Jacobi fields).21

As far as we are aware, there is no such results for general retraction, and
convergence results for general retractions are therefore not curvature de-
pendent and consequently not truly geometric. Thereby convergence rate in
Riemannian optimization when retraction is used, (see, e.g., Criscitiello &
Boumal, 2019; Lee et al., 2017; Zhang & Zhang, 2018) is based on the Lips-
chitz constants of the pullback function instead, which are hard to quantify
and mix the properties of the function and the manifold.
However, as explained in Section 3, our algorithm also works with a general
retraction. We agree about providing additional experiments to illustrate this
feature. We re-did Figure 1 in the paper by replacing the exponential map
with the retraction Rx(v) = (x+ v)/‖x+ v‖2; we show the resulting figure
here. We observe that the behavior is very similar as when the exponential
map is used.

22

4. In the theoretical part of the paper, we state the key technical challenges, main lemmas and the roadmap/proof23

sketch to the final result, in order to give the reader the intuition behind the proofs. This certainly interests a part of the24

community, and also strikes a balance between giving full details and completely skipping all proof in the main body.25

Reviewer 2. We thank the reviewer for their helpful comments. We will correct the small typos (thanks!). We will26

expand the discussion on our examples and empirical results to (a) explore the dependence of the rate on the geometric27

and function-dependent constants for the specific examples studied, and (b) empirically investigate whether for a28

manifold more curved than a sphere (large |K|), the convergence rate is slower than on the sphere. We will also post29

our code that implements the algorithm in Matlab for the examples in our paper later.30
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