
Thank you to all the reviewers for their careful evaluation and thoughtful feedback. We were happy to see that all three1

reviewers expressed appreciation for the paper’s clarity and theoretical novelty and believed our experimental results2

were strong and corroborated the theoretical claims. R1 believes the model is “an important development" while R23

says the paper “offers significant novelty and extends the state of the art in the area” and R3 says it “contains substantial4

novelty” and “will have an impact on the community”. We found all three reviewers understood and appreciated the5

main arguments and technical details of the paper. We again thank all three reviewers for their careful reviewing work.6

Time complexity. All three reviewers asked about the time complexity of our model versus PGDS. The two have the7

same time complexity. We will update the paper to emphasize this point. We state it in section 3 (line 143) where we8

say that any Poisson factorization model which yields the multinomial in equation 11 scales linearly with the non-zero9

counts—i.e.,O(S K) where S is the number of non-zeros and K is the number of components. PrGDS and PGDS have10

the same complexity but different constants—the difference is that MCMC for PGDS involves sampling T×K “auxiliary”11

counts from the Chinese restaurant table (CRT) distribution while PrGDS involves sampling T×K counts from the12

Bessel or SCH distribution. The CRT, Bessel, and SCH can all be sampled in constant time with similar constants since13

they are all underdispersed unimodal distributions whose PMFs and modes can are available in closed form.14

Relationship between PrGDS and PGDS. We will update the paper to clarify the relationship between PGDS and15

PrGDS since it seems that both R1 and R3 have a subtle misunderstanding of it that may have led them to down-weight16

the originality of the paper. R1 says "Originality: This is an extension of the PGDS model." R3 says: "This paper uses17

a new trick on [PGDS]". PrGDS is closely related to PGDS but it is neither an "extension" nor a "trick" for it. We18

would like to highlight R2’s characterization: "[PrGDS] builds on [PGDS] albeit departing from the standard PGDS19

formulation and required augmentation scheme..." The key point is that the proposed model does not have “auxiliary”20

variables but rather the “the latent structure is expanded (in relation to PGDS)”, as R2 correctly states. The proposed21

model’s expanded latent structure includes an extra layer of latent states and thus expresses more dispersed processes.22

This may answer R1’s related question: “the transition for θ(t)k is a mixture of gammas in contrast to PGDS...it would23

be interesting to see what effects this has...”. We agree and characterize this mixture in equation 9 and figure 2—it can24

be understood as an overdispersed gamma. Our model, by extension, can be understood as an overdispersed PGDS.25

Hyperparameters ε(λ)

0 and ε(θ)0 . R1 and R2 ask about hyperparameters. For theoretical reasons given in the Discussion,26

we believe that ε(θ)0 =0 should perform the best. We thus selected a simple alternative ε(θ)0 =1 as an illustrative baseline27

to corroborate the theory. There is no conjugate prior, but we agree that inferring it would be interesting and are28

currently working on an auxiliary variable scheme to do so. We also fixed ε(λ)

0 =1 to limit the number of branching29

paths for the purpose of clean exposition but agree that sparsity in the component weights is another interesting avenue.30

R1. R1 asks about “burstiness”. We use the term, like Schein et al. (2016) and others, to refer to non-smooth time series31

that may exhibit extreme values that are immediately preceded by small or zero values. R1 asks about the difference in32

performance across different data sets. Aggregating data into matrices versus tensors yields count sequences of differing33

levels of “burstiness” and sparsity, which we believe to be the contributing factors to differences in performance. We34

agree with R1 that it would be interesting to precisely characterize when the performance of PrGDS and PGDS will differ.35

R2. R2 asks about perplexity. This metric is commonly used within the topic modeling community—but, we36

will make it clearer that it has a one-to-one relationship with posterior predictive probability, which is stan-37

dard throughout Bayesian machine learning. For a heldout count yi and training data Y the posterior predic-38

tive P (yi |Y ) ≈ 1
S

∑S
s=1 P (yi |µs) can be approximated with S samples µs ∼ P (µ |Y ) drawn from the pos-39

terior. Line 212 in the paper then shows how perplexity is inversely proportional to the posterior predictive.40
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Figure 1: Four chains of the sparse
PrGDS on ICEWS tensor data—all
converge after 750 iterations.

We agree that coverage would be another illuminating metric. R2 also makes41

a very intriguing suggestion about whether the sparsity of PrGDS may assist in42

showing identifiability; we don’t have such results now, but will think about it for43

future work. R2 also asks about MCMC. In figure 1, we provide some evidence44

of convergence—we found that all models converged on all data sets before 1,00045

iterations, which is why we discarded the first 1,000 samples as burn-in in the46

experiments. R2 also mentions variational inference—yes, we have derived VI47

updates from the Gibbs sampler and are currently working on a follow-up paper!48

R3. R3 makes an excellent point: “this technique can be readily applied to other models (e.g., Gamma belief networks,49

maybe Dirichlet Belief Networks) and circumvent the complex data augmentation techniques usually required.” Indeed,50

the reason we chose to highlight the Poisson-gamma-Poisson motif in its own section 4.1 is because of its potential51

application to a wide variety of new models. However, R3 also says “a 7 is the maximum I can give...as this trick52

applies only to the rate parameter of the Gamma". Our construction applies to the shape, not rate, which is the more53

challenging (non-conjugate) parameter to infer. We hope R3 will not limit their score to a 7 given that elegant and54

efficient solutions to gamma shape inference have many possible applications (some of which R3 themself suggests!).55


