
We thank the reviewers for their valuable comments. We will add the suggested citations and fix the typos and update1

the manuscript and the supplement with the discussions below. To ensure reproducibility, we will release the code and2

trained models. We now address all the comments individually.3

R1-3. First-order model. The equation TS←D(z) ≈ TS←R(pk)+Jk(z−TD←R(pk)) (4) defines how the coordinates4

in the neighbourhood of the keypoint should be transformed. Zeroth-order approximation for TS←D(z) is TS←R(pk)5

which does not produce meaningful motion since all the points in a neighborhood of a keypoint are mapped to the6

same location. Instead, Monkey-net [21] considers zeroth-order approximation for TS←D(z)− z, which corresponds7

to Jk = 1 in Eq.(4). It assumes that motion is constant in the neighbourhood of keypoints (pixels are simply shifted).8

We call this a zeroth-order model. Such model, for example, cannot handle objects moving towards the camera. In9

contrast, the proposed first-order model can handle such motion by introducing Jk, which models the corresponding10

affine transformation.11

R1-3. Reference frame. To define Jk we assume there exists an abstract reference frame which is an arbitrary12

representation of the object. We note that the reference frame is an abstract concept that cancels out in our derivations,13

therefore not allowing us to visualize it. Then, Eq.(4) can be viewed as mapping the object from the driving frame to14

this arbitrary representation, followed by mapping it to the source frame. Note that unlike [31] there is no dependence15

on the reference frame in the final model, the only constraint we have on the reference is that it should be similar for16

both source and driving frames near keypoints locations. In fact as long as pk (keypoint coordinates in the reference17

frame) is the same for source and driving keypoints, we can move the object to an arbitrary location in the reference18

frame without changing the target result. Therefore, the coordinate of pk cannot be estimated and visualized.19

R1. Difference of the gaussian heatmaps. Gaussian heatmaps are usually employed for pose guided generation [2].20

Here, we use the difference of gaussians to indicate to the dense motion predictor where the source keypoints are.21

This information helps predict occlusion maps. Concatenation of source and driving heatmaps requires twice as much22

channels and hence is computationally less efficient. A similar representation was used in [21].23

R1. Equivariance constraints. Since there is no direct supervision on the keypoints, their predictions can be24

unstable. Equivariance constraint forces the model to predict consistent keypoints with respect to a known geometric25

transformation TX←Y. We used thin plate splines as they have been previously employed in unsupervised keypoint26

detection [15, 32] and are similar to natural image deformations. Similarly to keypoints locations we introduce27

equivariance constraints for jacobians in the keypoint neighbourhood.28

R2. Gap between "Full" and "Pyr.+O" model. The difference between Full and Pyr.+O corresponds exactly to the29

addition of Jacobians and of the equivariance loss over Jacobians, e.g Eq.(11). Note that Pyr.+O and other baselines use30

equivariance loss over keypoint locations, e.g Eq.(10). If we disable equivariance loss over Jacobians they will become31

unstable, and we get the following results L1 - 0.073, (AKD, MKR) - (9.89, 0.052), AED - 0.22. Note this performance32

is significantly worse than Pyr.+O, and similar to the Baseline (see Tab. 1).33

R2. Reconstruction loss. We use the following layers for each resolution conv1_2, conv2_2, conv3_2, conv4_2,34

conv5_2, similarly to [28]. The resolutions are 256× 256, 128× 128, 64× 64 and 32× 32. There are 5× 4 terms in35

total. The pyramid loss implementation suggested by R2 corresponds to the loss used by [28], which in our experiments36

led to very blurry results (see Fig. 2). Our loss adds minimal computational overhead compared to the loss of [28].37

R2. Aspect ratio. We cropped faces using square bounding boxes. If the detector outputs a rectangular bounding box38

of size 300× 200, we first enlarge this bounding box to 300× 300 and then crop. Thus, the aspect ratio does not change.39

R3. Failure cases. Failure cases will be added to Supp.Mat. and to the associated video. Overall, failures cases are40

often due to not realistic inpainting (Example 1,3 and 5 in the figure below) or rare motions, underrepresented in training41

data (Example 2 and 4 in the figure below). Zoom-in for greater detail.42
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R3. Second order motion model. Second order extension of our model is possible but is a subject of future work.It43

will require computation of the second derivative of the inverse of T which is a three dimensional tensor.44

R3. Fig. 1. The intuition behind Fig. 1 is that we combine keypoint displacement from motion model of [21] (see45

above), with Jk. We will clarify this in the camera ready.46

R3. Clarifications about L161-L163. ConvNets are known to have difficulties to use information from input regions47

to generate spatially distant output regions. For example, it is hard for a CNN to utilize information from a region on48

the left to generate a region on the right. To simplify this task, similarly to [21] we warp the images such that the input49

regions in the source image have approximately the same coordinates as their output counterparts. For more information50

see [21] Sections 3.3-3.4.51


